1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paraphin [41]
2 years ago
12

Explain the two advantages and the two disadvantages of fission as an energy source.

Engineering
1 answer:
yawa3891 [41]2 years ago
6 0

Answer with Explanation:

1) The advantages of fission energy are:

a) Higher concentration of energy : Concentration of energy or the energy density is defined as the amount of energy that is produced by burning a unit mass of the fuel. The nuclear energy obtained by fission has the highest energy density among all the other natural sources of energy such as coal,gas,e.t.c.

b) Cheap source of energy : The cost at which the energy is produced by a nuclear reactor after it is operational is the lowest among all the other sources of energy such as coal, solar,e.t.c

2) The disadvantages of fission energy are:

a) Highly dangerous residue: The fuel that is left unspent is highly radioactive and thus is very dangerous. Usually the residual material is taken deep into the earth for it's disposal.

b) It has high initial costs of design and development: The cost to design a nuclear reactor and to built one after it is designed is the most among all other types of energy sources and requires highly skilled personnel for operation.

You might be interested in
Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12.00
fgiga [73]

Answer:

Here is the code.

Explanation:

#include<stdio.h>

int main()

{

int i, time_worked, over_time, overtime_pay = 0;

for (i = 1; i <= 10; i++)

{

 printf("\nEnter the time employee worked in hr ");

 scanf("%d", &time_worked);

 if (time_worked>40)

 {

  over_time = time_worked - 40;

  overtime_pay = overtime_pay + (12 * over_time);

 }

}

printf("\nTotal Overtime Pay Of 10 Employees Is %d", overtime_pay);

return 0;

}

Output :

Enter the time employee worked in hr 42

Enter the time employee worked in hr 45

Enter the time employee worked in hr 42

Enter the time employee worked in hr 41

Enter the time employee worked in hr 50

Enter the time employee worked in hr 51

Enter the time employee worked in hr 52

Enter the time employee worked in hr 53

Enter the time employee worked in hr 54

Enter the time employee worked in hr 55

Total Overtime Pay Of 10 Employees Is 1020.

6 0
2 years ago
A driver is traveling at 90 km/h down a 3% grade on good, wet pavement. An accident
Paul [167]

Answer:

0.35

Explanation:

We resolve the component of the weight of the car along and perpendicular to the grade. We have mgsinФ and mgcosФ where Ф = angle of grade.

Now, the frictional force f = μN = μmgcosФ where μ = coefficient of friction

So, the net force along the grade is F = mgsinФ - μmgcosФ.

The work done by this force moving a distance, d along the grade is

W = (mgsinФ - μmgcosФ)d

This work equals the change in kinetic energy of the car. So ΔK = 1/2m(v₂² - v₁²) = W = (mgsinФ - μmgcosФ)d

1/2m(v₂² - v₁²) = (mgsinФ - μmgcosФ)d

1/2(v₂² - v₁²) = (gsinФ - μgcosФ)d

(v₂² - v₁²)/2d = (gsinФ - μgcosФ)

dividing through by gcosФ, we have

(v₂² - v₁²)/2dgcosФ = (gsinФ/gcosФ) - μgcosФ/gcosФ

(v₂² - v₁²)/2dgcosФ = tanФ -  μ

μ = tanФ - (v₂² - v₁²)/2dgcosФ

given that tanФ = 3% = 3/100 and 1 + tan²Ф = 1/cos²Ф, cosФ = 1/(√1 + tan²Ф) = 1/(√1 + (3/100)²) = 1/(√1 + (9/10000)) = 1/(√10000 + 9/10000) = 1/√(10009/10000) = 100/√10009 = 100/100.05 = 0.9995.

Also, given that v₁ = 90 km/h = 90 × 1000/3600 m/s = 25 m/s and v₂ = 45 km/h = 45 × 1000/3600 m/s = 12.5 m/s, d = 75 m and g = 9.8 m/s².

So, substituting the values of the variables into the equation, we have

μ = tanФ - (v₂² - v₁²)/2dgcosФ

μ = 3/100 - ((12.5 m/s)² - (25 m/s)²)/(2 × 75 m × 9.8 m/s² × 0.9995)

μ = 3/100 - ((156.25 m/s)² - (625 m/s)²)/1,469.265 m²/s²

μ = 3/100 - (-468.75 m²/s²)/1,469.265 m²/s²

μ = 3/100 + 468.75 m²/s²/1,469.265 m²/s²

μ = 0.03 + 0.32

μ = 0.35

So, theoretical friction  coefficient is 0.35

4 0
3 years ago
Can someone help me plz!!! It’s 25 points
lora16 [44]
Where’s the question at ???
3 0
2 years ago
Read 2 more answers
AC motor characteristics require the applied voltage to be proportionally adjusted by an AC drive whenever the frequency is chan
Margarita [4]
The answer is false
6 0
3 years ago
Read 2 more answers
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
2 years ago
Other questions:
  • The driveshaft of an automobile is being designed to transmit 238 hp at 3710 rpm. Determine the minimum diameter d required for
    8·1 answer
  • A manager has a list of items that have been sorted according to an item ID. Some of them are duplicates. She wants to add a cod
    7·1 answer
  • A Carnot heat engine absorbs 235 KW of heat from a heat source and rejects 164 KW to the atmosphere. Determine the thermal effic
    7·1 answer
  • In 2009 an explosive eruption covered the island of Hunga Ha'apai in black volcanic ash. What type of succession is this?
    7·1 answer
  • PLEASE HELP WITH THIS ASAP! Thanks
    6·1 answer
  • Which is the correct way of dual dimensioning using the position method
    7·1 answer
  • Two children are playing on a seesaw. The child on the left weighs 50 lbs. And the child on the right weighs 100 lbs. If the chi
    5·1 answer
  • What could I do to make this bridge hold more weight without making it heavier? Lateral bracing and a design on the top will be
    14·1 answer
  • who wants points for now work just put any answer who wants points for now work just put any answer who wants points for now wor
    5·1 answer
  • Describe the risks associated with their working environment (such as the tools, materials and equipment that they use, spillage
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!