1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paraphin [41]
3 years ago
12

Explain the two advantages and the two disadvantages of fission as an energy source.

Engineering
1 answer:
yawa3891 [41]3 years ago
6 0

Answer with Explanation:

1) The advantages of fission energy are:

a) Higher concentration of energy : Concentration of energy or the energy density is defined as the amount of energy that is produced by burning a unit mass of the fuel. The nuclear energy obtained by fission has the highest energy density among all the other natural sources of energy such as coal,gas,e.t.c.

b) Cheap source of energy : The cost at which the energy is produced by a nuclear reactor after it is operational is the lowest among all the other sources of energy such as coal, solar,e.t.c

2) The disadvantages of fission energy are:

a) Highly dangerous residue: The fuel that is left unspent is highly radioactive and thus is very dangerous. Usually the residual material is taken deep into the earth for it's disposal.

b) It has high initial costs of design and development: The cost to design a nuclear reactor and to built one after it is designed is the most among all other types of energy sources and requires highly skilled personnel for operation.

You might be interested in
Salvage ethnography is the effort to ensure that ethnography remains an important part of anthropology. recording of linguistic
fenix001 [56]

Answer:

                D

Explanation:

                            D

6 0
3 years ago
Develop a chase plan that matches the forecast and compute the total cost of your plan. (Negative amounts should be indicated by
vladimir2022 [97]

Answer:

The answer for the question :

"Develop a chase plan that matches the forecast and compute the total cost of your plan. (Negative amounts should be indicated by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Omit the "$" sign in your response.)"

is explained in the attachment.

Explanation:

4 0
3 years ago
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
HEY Y'ALL!!! WILL GIVE BRAINLEST AND THANKS+A LOT OF POINTS!!!!! So in class our teacher wants to help us think out of the box m
Elden [556K]

Answer:

2) phone

3) snake

Explanation:

NO EXPLANATION

5 0
3 years ago
Read 2 more answers
21. Explique claramente como el fenotipo es el que favorece o desfavorece los resultados productivos obtenidos tanto en las expl
Montano1993 [528]
Los sistemas de producción pecuaria, son considerados como la estrategia social, económica y cultural más apropiada para mantener el bienestar de las comunidades, debido a que es la única actividad que puede simultáneamente proveer seguridad en el sustento diario, conservar ecosistemas, promover la conservación de la
6 0
3 years ago
Other questions:
  • tech a says that a tire with more wear on the center of the tread is caused by under inflation of the size tech b says featherin
    12·1 answer
  • A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. I
    13·1 answer
  • Compute the thermal efficiency for an ideal gas turbine cycle that operates with a pressure ratio of 6.75 and uses helium gas.
    12·1 answer
  • Manufacturing employees who perform assembly line work are referred to as
    7·2 answers
  • Select the correct answer. Which statement best describes a hydrogen fuel cell? A This device uses bioethanol as an additive to
    9·2 answers
  • Which term describes a Cloud provider allowing more than one company to share or rent the same server?
    7·1 answer
  • Which of the following answer options are your employer's responsibility?
    14·1 answer
  • 1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM
    12·1 answer
  • A. 50
    6·1 answer
  • A well-designed product will increase?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!