1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paraphin [41]
2 years ago
12

Explain the two advantages and the two disadvantages of fission as an energy source.

Engineering
1 answer:
yawa3891 [41]2 years ago
6 0

Answer with Explanation:

1) The advantages of fission energy are:

a) Higher concentration of energy : Concentration of energy or the energy density is defined as the amount of energy that is produced by burning a unit mass of the fuel. The nuclear energy obtained by fission has the highest energy density among all the other natural sources of energy such as coal,gas,e.t.c.

b) Cheap source of energy : The cost at which the energy is produced by a nuclear reactor after it is operational is the lowest among all the other sources of energy such as coal, solar,e.t.c

2) The disadvantages of fission energy are:

a) Highly dangerous residue: The fuel that is left unspent is highly radioactive and thus is very dangerous. Usually the residual material is taken deep into the earth for it's disposal.

b) It has high initial costs of design and development: The cost to design a nuclear reactor and to built one after it is designed is the most among all other types of energy sources and requires highly skilled personnel for operation.

You might be interested in
Shielding gases are used to protect the molten metal from what?
Gre4nikov [31]

Answer:Oxygen,Carbon dioxide,Nitrogen

Explanation:

4 0
2 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
3 years ago
How to calculate tension.
Evgen [1.6K]

Answer:

Tension can be easily explained in the case of bodies hung from chain, cable, string

Explanation

uniform speed, tension; T = W.

T=m(g±a)

3 0
2 years ago
How can I draw this image in 2D form
Ket [755]

Answer:

no it is not 2D

Explanation:

it is 3D

ok so follow these steps

- make hole

-make square

-make triangle

ok now your figure is ready

5 0
2 years ago
Other questions:
  • Does the army good 4 you
    15·1 answer
  • ). A company periodically tests its product for tread wear under simulated conditions. Thirty random samples, each containing 5
    11·1 answer
  • . A piston-cylinder device whose piston is resting on top of a set of stops initially contains 0.5 kg of helium gas at 100 kPa a
    14·1 answer
  • Show that -40 F is approximately equal to -40 C.
    12·1 answer
  • An aggregate blend is composed of 65% coarse aggregate by weight (Sp. Cr. 2.635), 36% fine aggregate (Sp. Gr. 2.710), and 5% fil
    5·1 answer
  • Which of these are factors of 121?
    13·2 answers
  • Which of the following describes a polar orbit?
    7·1 answer
  • PLEASE HELP!<br> I'm in the middle of a test and the teacher didn't go over the material!
    10·1 answer
  • PDC Bank is working on creating an AI application that enables customers to send SMS to the AI application to allow banking acti
    9·1 answer
  • What is the difference between absorbed wavelengths and reflected wavelengths?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!