Answer:
The second projectile was 1.41 times faster than the first.
Explanation:
In the ballistic pendulum experiment, the speed (v) of the projectile is given by:
<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum. </em>
To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:
(1)
<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively. </em>
Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

Therefore, the second projectile was 1.41 times faster than the first.
I hope it helps you!
There is no scientific evidence to support this claim. And it is not telling what colors are needing to be worn only the stated bright colors which can mean an assortment of things.
Explanation:
1. To graphically add vectors, use the tail-to-tip method. Draw the first vector (it doesn't matter which), then draw the second vector where the first vector ends. The resultant vector is from the tail of the first vector to the tip of the second vector.
This graph shows two ways to get the resultant: A + B or B + A.
desmos.com/calculator/bqhcclhhqc
2. To algebraically add vectors, split each vector into x and y components.
Aₓ = 5.0 cos 45 = 3.5
Aᵧ = 5.0 sin 45 = 3.5
Bₓ = 2.0 cos 180 = -2.0
Bᵧ = 5.0 sin 180 = 0
The components of the resultant vector are the sums of the components of A and B.
Cₓ = 3.5 + -2.0 = 1.5
Cᵧ = 3.5 + 0 = 3.5
The magnitude of the resultant vector is found with Pythagorean theorem, and the direction is found with tangent.
C = √(Cₓ² + Cᵧ²) ≈ 3.9 m/s
θ = atan(Cᵧ / Cₓ) ≈ 67°
Answer:
2π/[28 x (10^-3)]
Explanation:
Angular speed : ω=2π/T
T = 28ms = 28 x (10^-3) s
Angular speed = 2π/[28 x (10^-3)]
Metals are not brittle so it can’t be the first one or the third one, both metalloids and metals are shiny so it can’t be the second one. Therefore, it would be the last one because both metalloids and metals are shiny and both are solids at room temperature because it is not a high enough melting point.
ANSWER: Both are shiny and are solid at room temperature.