Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
Use of electromagnetic because it moves very faster than others for example xrays theynar very very slow so that not It it is d.
Answer: It should be A or the very left red circle that you can click on
Explanation: Because when the wind is moving downward and the earth is spinning the spot the wind ends up will never be directly down from where it was to begin with
Answer:
D. When the box is placed in an elevator accelerating upward
Explanation:
Looking at the answer choices, we know that we want to find out how the normal force varies with the motion of the box. In all cases listed in the answer choices, there are two forces acting on the box: the normal force and the force of gravity. These two act in opposite directions: the normal force, N, in the upward direction and gravity, mg, in the downward direction. Taking the upward direction to be positive, we can express the net force on the box as N - mg.
From Newton's Second Law, this is also equal to ma, where a is the acceleration of the box (again with the upward direction being positive). For answer choices (A) and (B), the net acceleration of the box is zero, so N = mg. We can see how the acceleration of the elevator (and, hence, of the box) affects the normal force. The larger the acceleration (in the positive, i.e., upward, direction), the larger the normal force is to preserve the equality: N - mg = ma, N = ma+ mg. Answer choice (D), in which the elevator is accelerating upward, results in the greatest normal force, since in that case the magnitude of the normal force is greater than gravity by the amount ma.
Answer:
The degree of reflection whether faint or bright you see on the surface of an object is an indication that light particles had hit the surface. Since light is a wave and as part of its characteristics can get reflected. However, the amount of light reflected by a surface is dependent on the smoothness of the surface which can be shiny or dull, it can also be dependent on the nature of the surface which can be glass, water, and so on. So, from the question, you can see a faint reflection on the surface of a shiny plate or cup because of the smoothness of the surface which reflects the lights that hit it from a particular direction at the same angle.