Answer:
x=31.09m
Explanation:
p1=p2
The momentum of flatcar and the momentum of the worker so
The velocity of the worker is:
The total motion has a total velocity and is
The time the worker take walking is
Now the total time and the total velocity determinate the motion of tha flatcar how far has moved
We need to considerate only the horizontal component of the motion of the toy car.
The formula for the distance in a decelerated motion is:
s = s₀ + v₀·t - 1/2·a·t²
where:
s₀ = initial position = 0
v₀ = initial velocity = 1.21 m/s
t = time elapsed = 0.342 s
a = deceleration = 0.131 m/s²
Plugging in numbers:
s = 0 + 1.21×0.342 - 0.5×0.141×(0.342)²
= 0.406 m
Hence, the toy car traveled a distance of about 41 cm.
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²
(1.00 atm) (0.1156 L) = (n) (0.08206 L atm / mol K) (273 K) I hoped that helped
Answer:
The speed is 24
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24
<u><em>The speed is 24 </em></u><u><em></em></u>