Using boyles law
p1v1=p2v2
v1=3.88
v2=5.43
p1=707
p2=?
707x3.88=p2x5.43
2743.16/5.43=p2
p2=505mmHg
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 
The full question is shown in the image attached
Answer:
See explanation
Explanation:
In naming an alkane, the first thing we do is to obtain the parent chain by counting the number of carbon atoms in the chain.
When we obtain that, then we identify the substituents and number them in such a way that they have the lowest numbers. The compounds shown have the following names according to the order in which the structures appear in the image attached;
1. 2-methyl propane
2. 2,4-dimethyl heptane
3. 2,2,3,3-tetramethyl butane
4. 5-ethyl-2,4-dimethyl octane
Answer:
The correct option is;
The electronegativity increases
Explanation:
The electronegativity is the measure of an atom's ability to attract a shared electron pair. The electronegativity of an atom is dependent on the atom's atomic number and the separation distance between the electrons in the valence shell and the positively charged nucleus such that an increase in the atomic number results in an increase in electronegativity and an increase in the distance between the valence electrons and the nucleus, leads to a decrease in electronegativity.