Answer:
Chain reaction
Explanation:
A chain reaction is a reaction that sustains itself. It has the ability to continue for a very long time without adding any more materials to the reaction system. It may be succinctly described as a self propagating reaction.
In a nuclear fission, uranium-235 is bombarded with neutrons to produce unstable uranium-236 which disintegrates to form daughter nuclei and produce more neutrons that bombard more uranium-235 and the reaction continues indefinitely.
Answer:
The correct answer is D
Explanation:
Many substances hold their molecules together in the liquid or solid bosom. This is due, in addition to the pressure and temperature conditions, by the forces of Van der Waals. These are still produced in nonpolar molecules by the movement of electrons through the molecules; in extremely short periods of time, their electrons "charge" towards one end of the molecule, producing small dipoles and keeping the molecules very close to each other.
Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
Answer:
1.36 × 10³ mL of water.
Explanation:
We can utilize the dilution equation. Recall that:

Where <em>M</em> represents molarity and <em>V</em> represents volume.
Let the initial concentration and unknown volume be <em>M</em>₁ and <em>V</em>₁, respectively. Let the final concentration and required volume be <em>M</em>₂ and <em>V</em>₂, respectively. Solve for <em>V</em>₁:

Therefore, we can begin with 0.640 L of the 2.50 M solution and add enough distilled water to dilute the solution to 2.00 L. The required amount of water is thus:

Convert this value to mL:

Therefore, about 1.36 × 10³ mL of water need to be added to the 2.50 M solution.
The answer to the question is Eight