Answer: x=0.6 btw how do you put a picture into a question.
Step 1:
Start by putting

in front of each term
![\frac{d}{dx}[y cos x]= \frac{d}{dx}[5x^2]+ \frac{d}{dx}[ 3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%20cos%20x%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B5x%5E2%5D%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%203y%5E2%5D)
-----------------------------------------------------------------------------------------------------------------
Step 2:
Deal with the terms in 'x' and the constant terms
![\frac{d}{dx}[ycosx]= 10x+ \frac{d}{dx} [3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D%2010x%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B3y%5E2%5D%20%20)
----------------------------------------------------------------------------------------------------------------
Step 3:
Use the chain rule for the terms in 'y'
![\frac{d}{dx}[ycosx]=10x+6y \frac{dy}{dx}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D10x%2B6y%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20)
--------------------------------------------------------------------------------------------------------------
Step 4:
Use the product rule on the term in 'x' and 'y'


--------------------------------------------------------------------------------------------------------------
Step 5:
Rearrange to make

the subject


![[cos(x) - 6y] \frac{dy}{dx}=10x + y sin(y)](https://tex.z-dn.net/?f=%5Bcos%28x%29%20-%206y%5D%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D10x%20%2B%20y%20sin%28y%29%20)

⇒ Final Answer
Answer:
the monthly payment is $303.69
Step-by-step explanation:
this is how i got it:
9,550 divided by 100= 95.5
95.5 x 3.18= 303.69
so the monthly payment it $303.69
Answer:50%
Step-by-step explanation:
x° = 14°, y° = 14°; Use vertical and supplementary angles.
Step-by-step explanation:
The image of the answer is attached below.
In the given image two lines are parallel with transversal.
(9x + 12)° and ∠1 are vertically opposite angles.
Vertically opposite angles are equal.
∠1 = (9x + 12)°
Consecutive interior angles are supplementary.
(9x + 12)° + 3x° = 180°
⇒ 12x° = 168°
⇒ x° = 14°
Sum of the adjacent angles in a line are supplementary.
3x° + (4y – 10)° = 180°
⇒ 3(14)° + 4y° – 10° = 180°
⇒ 4y° = 148°
⇒ y° = 14°
Hence, x° = 14°, y° = 14°; Use vertical and supplementary angles.