1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
3 years ago
14

Drag each label to the correct location on the chart. Classify the organisms based on how they obtain food.

Engineering
2 answers:
Yuliya22 [10]3 years ago
7 0

Answer: its there

Explanation:

Arisa [49]3 years ago
3 0

Autograph: Trees (Image 1), algae (Image 4), carrots (image 6)

Heterograph: Tiger (Image 2), deer (image 3), human (image 5)

Explanation:

The difference between autotroph and heterotroph organisms is the way they obtain energy. In the case of the first category, these include organisms that can produce energy by a process known as photosynthesis. This covers all plants and similar such as tress, algae, and carrots.

On the other hand, heterotrophic organisms cannot produce energy and need to feed on other organisms, which can include feeding on plants or animals. In this context, this category includes tigers because they feed on other animals, deer because they feed on plants, and humans because we feed on plants and animals.

You might be interested in
A reversible refrigeration cycle operates between cold and hot reservoirs at temperatures TC and TH, respectively. (a) If the co
podryga [215]

Answer:

a) T_{H} = 1.967\,^{\circ}F, b) COP_{R} = 9.105, c) T_{H} = 115.934\,^{\circ}F, d) COP_{R} = 6.995, e) T_{H} = 25.129\,^{\circ}C

Explanation:

a) The coefficient of performance of the reversible refrigeration cycle is:

COP_{R} = \frac{T_{C}}{T_{H}-T_{C}}

10 = \frac{419.67\,R}{T_{H}-419.67\,R}

The temperature of the hot reservoir is:

10\cdot T_{H} - 4196.7 = 419.67

T_{H} = 461.637\,R

T_{H} = 1.967\,^{\circ}F

b) The coefficient of performance is:

COP_{R} = \frac{273.15\,K}{303.15\,K-273.15\,K}

COP_{R} = 9.105

c) The temperature of the hot reservoir can be determined with the help of the following relation:

\frac{Q_{C}}{Q_{H}-Q_{C}} = \frac{T_{C}}{T_{H}-T_{C}}

\frac{500\,BTU}{600\,BTU-500\,BTU} = \frac{479.67\,R}{T_{H}-479.67\,R}

5 = \frac{479.67\,R}{T_{H}-479.67\,R}

5\cdot T_{H} - 2398.35 = 479.67

T_{H} = 575.604\,R

T_{H} = 115.934\,^{\circ}F

d) The coefficient of performance is:

COP_{R} = \frac{489.67\,R}{559.67\,R-489.67\,R}

COP_{R} = 6.995

e) The temperature of the cold reservoir is:

8.9 = \frac{268.15\,K}{T_{H}-268.15\,K}

8.9\cdot T_{H} - 2386.535 = 268.15

T_{H} = 298.279\,K

T_{H} = 25.129\,^{\circ}C

8 0
3 years ago
If you touch a downed power line, covered or bare, what's the likely outcome?
olya-2409 [2.1K]

Answer:

you get electrocuted...........

5 0
3 years ago
Read 2 more answers
Design for human-fit strategies include:
andreev551 [17]

Answer:

B- extreme fit, close fit, adjustable fit

Explanation:

A human-fit design typically involves the process of manufacturing or producing products (tools) that are easy to use by the end users. Therefore, human-fit designs mainly deals with creating ideas that makes the use of a particular product comfortable and convenient for the end users.

The design for human-fit strategies include; extreme fit, close fit and adjustable fit.

Hence, when the aforementioned strategies are properly integrated into a design process, it helps to ensure the ease of use of products and guarantees comfort for the end users.

5 0
2 years ago
An induced-draft cooling tower cools 90,000 gallons per minute of water from 84 to 68oF. Air at 14.61 psia, 70oF dry bulb and 60
belka [17]

Answer:

a. V = 109.64 × 10⁵ ft/min

b. Mw = 654519.54 kg/hr

Explanation:

Given Parameters

mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s

inlet temperature of water, T1 = 84 F = 28.89 C

outlet temperature of water, T2 = 68 F = 20 C

specific heat capacity of water, c = 4.18kJ/kgK

rate of heat remover from water, Qw is given by

Qw = 6607.33[28.89 - 20] * 4.18

Qw = 245529.545kw

For air, inlet condition

DBT = 70 F              hi = 43.43 kJ/kg

WBT = 60 F             wi = 0.00874 kJ/kg

                                u1 = 0.8445 m/kg

oulet condition,

DBT = 70 F        RH = 100.1

h1 = 83.504kJ/kg

Wo = 0.222kJ/kg

check the attached file for complete solution

3 0
3 years ago
Air enters a compressor operating at steady state at 1 bar, 290 K, with a mass flow rate of 0.1 kg/s and exits at 980 K, 10 bar.
stiv31 [10]

Answer:

7.615 kW

Explanation:

Solution in pen paper form in the attachment section

8 0
3 years ago
Other questions:
  • 1. Copy the file Pay.java (see Code Listing 1.1) from the Student CD or as directed by your instructor. 2. Open the file in your
    10·1 answer
  • Biologists use a sequence of letters A, C, T, and G to model a genome. A gene isa substring of a genome that starts after a trip
    5·1 answer
  • Write a function called pyramid(height) that acceptsa parameter ""height"". It then prints a pyramid of that height
    10·1 answer
  • In Engineering, what is a shoulder on a bridge?
    8·1 answer
  • If the outside diameter of a pipe is 2 m, the length of a piece of insulation wrapped around it would be a)- 628 cm b)- 12.56 m.
    15·1 answer
  • Which type of load generates a magnetic field?
    12·1 answer
  • Water at 20◦C is pumped through 1000 ft of 0.425 ft diameter pipe at a volumetric flowrate of 1 ft3/s through a cast iron pipe t
    14·1 answer
  • Home safety and security is an _________<br><br> process. (7 Letters)<br><br> Answer
    10·1 answer
  • PLEASE HELP!<br> I'm in the middle of a test and the teacher didn't go over the material!
    10·1 answer
  • Please help on two I will give brainiest​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!