Answer: The total vehicle delay is
39sec/veh
Explanation: we shall define only the values that are important to this question, so that the solution will be very clear for your understanding.
Effective red time (r) = 25sec
Arrival rate (A) = 900veh/h = 0.25veh/sec
Departure rate (D) = 1800veh/h = 0.5veh/sec
STEP1: FIND THE TRAFFIC INTENSITY (p)
p = A ÷ D
p = 0.25 ÷ 0.5 = 0.5
STEP 2: FIND THE TOTAL VEHICLE DELAY AFTER ONE CYCLE
The total vehicle delay is how long it will take a vehicle to wait on the queue, before passing.
Dt = (A × r^2) ÷ 2(1 - p)
Dt = (0.25 × 25^2) ÷ 2(1 - 0.5)
Dt = 156.25 ÷ 4 = 39.0625
Therefore the total vehicle delay after one cycle is;
Dt = 39
Answer:
a) 0.487
b) refrigeration load = 5.46w
c) cop = 2.24
d)ref load max = 12.43kw
Explanation:
Answer:
Explanation:
It wouldn't work because the wind energy she would be collecting would actually come from the car engine.
The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.
u' = u + v
While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.
Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.
A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.
Answer:
(A) Because the angle of twist of a material is often used to predict its shear toughness
Explanation:
In engineering, torsion is the solicitation that occurs when a moment is applied on the longitudinal axis of a construction element or mechanical prism, such as axes or, in general, elements where one dimension predominates over the other two, although it is possible to find it in diverse situations.
The torsion is characterized geometrically because any curve parallel to the axis of the piece is no longer contained in the plane initially formed by the two curves. Instead, a curve parallel to the axis is twisted around it.
The general study of torsion is complicated because under that type of solicitation the cross section of a piece in general is characterized by two phenomena:
1- Tangential tensions appear parallel to the cross section.
2- When the previous tensions are not properly distributed, which always happens unless the section has circular symmetry, sectional warps appear that make the deformed cross sections not flat.
Explanation:
Specific cutting energy:
It the ratio of power required to cut the material to metal removal rate of material.If we take the force required to cut the material is F and velocity of cutting tool is V then cutting power will be the product of force and the cutting tool velocity.
Power P = F x V
Lets take the metal removal rate =MRR
Then the specific energy will be

If we consider that metal removal rate and cutting tool velocity is constant then when we increases the cutting force then specific energy will also increase.