1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
4 years ago
7

For each of the following stacking sequences found in FCC metals, cite the type of planar defect that exists:

Engineering
1 answer:
lana [24]4 years ago
6 0

Answer:

a) The planar defect that exists is twin boundary defect.

b) The planar defect that exists is the stacking fault.

Explanation:      

I am using bold and underline instead of a vertical line.

a. A B C A B <u>C</u><u> </u>B A C B A

In this stacking sequence, the planar defect that occurs is twin boundary defect because the stacking sequence at one side of the bold and underlined part of the sequence is the mirror image or reflection of the stacking sequence on the other side. This shows twinning. Hence it is the twin boundary inter facial defect.

b. A B C A <u>B C  B C</u> A B C

In this stacking sequence the planar defect that occurs is which occurs is stacking fault defect. This underlined region is HCP like sequence. Here BC is the extra plane hence resulting in the stacking fault defect. The fcc stacking sequence with no defects should be A B C A B C A B C A B C. So in the above stacking sequence we can see that A is missing in the sequence. Instead BC is the defect or extra plane. So this disordering of the sequence results in stacking fault defect.

You might be interested in
Xyxyydfufggivivihogcufuf​
Genrish500 [490]

Answer:

ummm why is you doing this

Explanation:

It doesnt make sense.

7 0
4 years ago
Is my paper's main idea, or thesis, clearly stated early on (within the first paragraph, ideally)?
Burka [1]
I dont know is your papers main idea stated clearly?
5 0
3 years ago
Should aircraft wings have infinite stiffness?
Colt1911 [192]

Answer:

No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.

3 0
3 years ago
Read 2 more answers
A single fixed pulley is used to lift a load of 400N by the application of an effort of 480N in 10s through a vertical height of
Allushta [10]

Answer:

(a) the velocity ratio of the machine (V.R) = 1

(b) The mechanical advantage of the machine (M.A) = 0.833

(c) The efficiency of the machine (E) = 83.3 %

Explanation:

Given;

load lifted by the pulley, L = 400 N

effort applied in lifting the, E = 480 N

distance moved by the effort, d = 5 m

(a) the velocity ratio of the machine (V.R);

since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.

V.R = distance moved by effort / distance moved by the load

V.R = 5/5 = 1

(b) The mechanical advantage of the machine (M.A);

M.A = L/E

M.A = 400 / 480

M.A = 0.833

(c) The efficiency of the machine (E);

E = \frac{M.A}{V.R} \times 100\%\\\\E = 0.833 \ \times \ 100\%\\\\ E = 83.3 \ \%

4 0
3 years ago
Water vapor at 100 psi, 500 F and a velocity of 100 ft./sec enters a nozzle operating at steady sate and expands adiabatically t
almond37 [142]

Answer:

a)exit velocity of the steam, V2 = 2016.8 ft/s

b) the amount of entropy produced is 0.006 Btu/Ibm.R

Explanation:

Given:

P1 = 100 psi

V1 = 100 ft./sec

T1 = 500f

P2 = 40 psi

n = 95% = 0.95

a) for nozzle:

Let's apply steady gas equation.

h_1 + \frac{(v_1) ^2}{2} = h_2 + \frac{(v_2)^2}{2}

h1 and h2 = inlet and exit enthalpy respectively.

At T1 = 500f and P1 = 100 psi,

h1 = 1278.8 Btu/Ibm

s1 = 1.708 Btu/Ibm.R

At P2 = 40psi and s1 = 1.708 Btu/Ibm.R

1193.5 Btu/Ibm

Let's find the actual h2 using the formula :

n = \frac{h_1 - h_2*}{h_1 - h_2}

n = \frac{1278.8 - h_2*}{1278.8 - 1193.5}

solving for h2, we have

h_2 = 1197.77 Btu/Ibm

Take Btu/Ibm = 25037 ft²/s²

Using the first equation, exit velocity of the steam =

(1278.8 * 25037) + \frac{(100)^2}{2}= (1197.77*25037)+ \frac{(V_2)^2}{2}

Solving for V2, we have

V2 = 2016.8 ft/s

b) The amount of entropy produced in BTU/ lbm R will be calculated using :

Δs = s2 - s1

Where s1 = 1.708 Btu/Ibm.R

At h2 = 1197.77 Btu/Ibm and P2 =40 psi,

S2 = 1.714 Btu/Ibm.R

Therefore, amount of entropy produced will be:

Δs = 1.714Btu/Ibm.R - 1.708Btu/Ibm.R

= 0.006 Btu/Ibm.R

3 0
3 years ago
Other questions:
  • Based in bonding theory, explain why heat capacity increases when you consider metals, ceramics and polymers.
    14·1 answer
  • suppose we number the bytes in a w-bit word from 0 (less significant) to w/8-1 (most significant). write code for the followign
    11·1 answer
  • Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surro
    11·1 answer
  • List two reasons why machined parts often require a high degree of precision.
    8·1 answer
  • A hollow pipe is submerged in a stream of water so that the length of the pipe is parallel to the velocity of the water. If the
    9·1 answer
  • How many color are in da rainbow​
    5·2 answers
  • A steel rod, which is free to move, has a length of 200 mm and a diameter of 20 mm at a temperature of 15oC. If the rod is heate
    10·1 answer
  • Steam enters a heavily insulated throttling valve at 11 MPa, 600°C and exits at 5.5 MPa. Determine the final temperature of the
    14·1 answer
  • Design an algorithm for computing √n
    12·1 answer
  • Part A Identify the zero-force members in the truss. (Figure 1) (Hint: Use both visual inspection and analysis.) Check all that
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!