1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
11

If you are unsure about holding a piece of wood to be drilled, then you should always use a

Engineering
1 answer:
alisha [4.7K]3 years ago
4 0
C I took construction class
You might be interested in
Most of the work that engineers do with fluids occurs in nature. True False
zlopas [31]
True depending the jobs
3 0
3 years ago
How to code the round maze in CoderZ?
dlinn [17]

Answer:

hola

Explanation:

5 0
3 years ago
A reservoir is 1 km wide and 10 km long and has an average depth of 100m. Every hour, 0.1% of the reservoir's volume drops throu
Ksju [112]

Answer:

250.7mw

Explanation:

Volume of the reservoir = lwh

Length of reservoir = 10km

Width of reservoir = 1km

Height = 100m

Volume = 10x10³x10³x100

= 10⁹m³

Next we find the volume flow rate

= 0.1/100x10⁹x1/3600

= 277.78m³/s

To get the electrical power output developed by the turbine with 92 percent efficiency

= 0.92x1000x9.81x277.78x100

= 250.7MW

7 0
3 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
3 years ago
In the last 5 meters of braking, you lose ___ of your speed.
expeople1 [14]

Answer:

answer is

a)

3/4

Explanation:

In the last 5 meters of braking, you lose 3/4 of your speed.

5 0
3 years ago
Other questions:
  • Intravenous infusions are usually driven by gravity by hanging the bottle at a sufficient height to counteract the blood pressur
    11·1 answer
  • Why do we write proton ions first before electron ions? <br>​
    10·1 answer
  • A bus travels the 100 miles between A and B at 50 mi/h and then another 100 miles between B and C at 70 mi/h.
    6·1 answer
  • The driver _______
    9·2 answers
  • The phase sequence of a 3-phase system for which VAN = 120 /90o V and VBN = 120 /210o V is:_______
    11·1 answer
  • Which of the following activities can help expand engineers' creative thinking capabilities?
    11·2 answers
  • A steel rod, which is free to move, has a length of 200 mm and a diameter of 20 mm at a temperature of 15oC. If the rod is heate
    10·1 answer
  • A hub a signal that refreshes the signal strength.
    5·1 answer
  • The driver should be able to see the ground within _____ to the front?
    14·1 answer
  • A liquid jet vj of diameter dj strikes a fixed cone and deflects back as a conical sheet at the same velocity. find the cone ang
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!