Answer:
The rocks location is underneath an ocean or mountain
Explanation:
Silicic rock are igneous rock rich in silica. The amount of silica that constitutes a silicic rock is usually defined as at least sixty three percent. Granite and rhyolite are the most common silicic rocks found. These are found in the magma of the Earth.
Silicic is the group of silicate magmas which crystallise a relatively small proportion of ferromagnesian silicates. The main constituents of a silicic rock will be minerals rich in silica-minerals mainly.
Answer:
We know that the force pulling the box in the positive x direction has a magnitude of m g sin 30 . Using Newtons Second Law, F = ma , we just need to solve for a :
ma=mgsin30
a=gsin30
=(10m/s2)(0.500)
=5m/s2
Answer:
The correct answer is intensity.
Explanation:
The principle of overload is a basic sports fitness training concept which means that in order to improve, athletes must continually work harder as they their bodies adjust to existing workouts. Thus, overloading also plays a role in skill learning.
Now, since erhen wants to increase his mile run from eight to six minutes by run some sandy hills near his home, it means the principle at work is making his training runs more intense for better speed results. Thus the principle at work is intensity because he is trying to do something that makes him run faster.
Answer:
42.6083 mi/h
Explanation:
Given: A car travels 8km in 7 minutes.
To find: Find the speed of the car.
Formula: 
Solution: Since the formula for the speed of an object (which is the car) is speed = distance ÷ time, divide the distance (8km) by the time (7min)
Speed = 42.6083 miles per hour
In that case, there are three possible scenarios:
-- If the braking force is less than the force delivered by the engine,
then the car will continue to accelerate, and the brakes will eventually
overheat and erupt in flame.
-- If the braking force is exactly equal to the force delivered by the engine,
then the car will continue moving at a constant speed, and the brakes will
eventually overheat and erupt in flame.
-- If the braking force is greater than the force delivered by the engine,
then the car will slow down and eventually stop. If it stops soon enough,
then the absorption of kinetic energy by the brakes will end before the
brakes overheat and erupt in flame. Even if the engine is still delivering
force, the brakes can be kept locked in order to keep the car stopped ...
They do not absorb and dissipate any energy when the car is motionless.