Answer:
Anything in an experiment that remains unchanged.
Explanation:
An example could be the temperature of the laboratory room. If there is something that has an effect on an experiment that is not variable, it is a constant. Another constant could be, say, if you were doing calculations with the same amount and kind of fluid throughout the experiment, then that fluid would also be a constant.
The uniform acceleration of the car is 4.485 m/s².
<h3>
Acceleration of the car</h3>
The uniform acceleration of the car is calculated as follows;
v² = u² + 2as
a = (v² - u²)/2s
where;
- v is final velocity = 41 m/s
- u is initial velocity = 28 m/s
- s is distance = 100 m
- a is acceleration = ?
a = (41² - 28²)/(2 x 100)
a = 4.485 m/s²
Thus, the uniform acceleration of the car is 4.485 m/s².
Learn more about uniform acceleration here: brainly.com/question/2505743
#SPJ1
Answer:
I = 0.002593 A = 2.593 mA
Explanation:
Current density = J = (3.00 × 10⁸)r² = Br²
B = (3.00 × 10⁸) (for ease of calculations)
The current through outer section is given by
I = ∫ J dA
The elemental Area for the wire,
dA = 2πr dr
I = ∫ Br² (2πr dr)
I = ∫ 2Bπ r³ dr
I = 2Bπ ∫ r³ dr
I = 2Bπ [r⁴/4] (evaluating this integral from r = 0.900R to r = R]
I = (Bπ/2) [R⁴ - (0.9R)⁴]
I = (Bπ/2) [R⁴ - 0.6561R⁴]
I = (Bπ/2) (0.3439R⁴)
I = (Bπ) (0.17195R⁴)
Recall B = (3.00 × 10⁸)
R = 2.00 mm = 0.002 m
I = (3.00 × 10⁸ × π) [0.17195 × (0.002⁴)]
I = 0.0025929449 A = 0.002593 A = 2.593 mA
Hope this Helps!!!
<span>Mass of the electron = 9.1 x 10 ^ -28g = 9.1 x 10 ^ -31kg
Velocity of the electron = 1.7 x 10 ^ 4
We have Planck Constant h = 6.626 x 10 ^ -34
Wavelength of the electron w = h/mv
w = 6.626 x 10 ^ -34 / ((9.1 x 10 ^ -31)(1.7 x 10 ^ 4))
= 6.626 x 10 ^ -34 / 15.47 x 10 ^ -27
= 0.428312 x 10 ^ -7
= 4.28 x 10 ^ -8 m</span>