Answer:
This is very easy Cuz We have 2Na2O We have O2 so thats molecule of Oxygen and its same on product We need to balance Na on start We have 1 on product We have 2 so Just put 2 at start....
Explanation:
Sorry for bad english not my first language :(
2Na+O2-->2Na20
Answer:
Molar mass = 151.9 g/mol
Explanation:
The molar mass of a compound is obtained by adding u the individual atomic masses in the compound. The unit is g/mol.
In FeSO4, we have one Fe, one S and 4 O.
The atomic masses are given as follows;
Fe = 55.845 u
S = 32.065 u
O = 15.999 u
Molar mass = ( 1 * Fe) + (1 * S) + (4 * O)
Molar mass = (1 * 55.854 ) + ( 1 * 32.065) + (4 * 15.999)
Molar mass = 151.915 g/mol
In four significant figures;
Molar mass = 151.9 g/mol
Doping Se (group VI elements) with P(group V)elements would produce a P-TYPE semiconductor with HIGHER conductivity compared to pure Se
the reason is P dopant will introduce holes in the Se as P has lesser valence electron
Sodium fluoride- to brush teeth
Citric acid- orange juice for breakfast
Sodium hydroxide- cleaning agent
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L