Answer:
iodine.
<h2>..................</h2>
Option B. <span>Rb2O + Cu(C2H3O2)2 → 2RbC2H3O2 + CuO is the correct answer. HOPE IT HELPS</span>
<span>Catalysts decrease the activation energy and the more collisions result in a </span>reaction<span>, so the </span>rate<span> of </span><span>reaction increases.</span><span />
₉₂U²³⁵ + ₀n¹ → ₅₄Xe¹⁴⁰ + ₃₈Sr⁹⁴ + 2 ₀n¹
Mass of reactants = 235.04393 + 1.008665 = 236.052595 amu
Mass of products = 139.92144 + 93.91523 + 2* (1.008665) = 235.854000 amu
Mass defect Δ m = 236.052595 - 235.854000 = 0.198 amu
Reaction energy released Q = Δ m * 931.5
= 0.198 * 931.5 = 185 MeV
Answer: Option (b) is the correct answer.
Explanation:
The given chemical reaction shows that hydrogen cyanide acid has been added to water which results in the formation of hydronium ion and cyanide ion.
Also, when we add a base like sodium hydroxide (NaOH) to HCN then it will help in accepting a proton (
) from hydrogen cyanide. As a result, formation of
anion will be rapid and easy.
This will make the system not to do any extra work. So, amount of work done by system will decrease.
Thus, we can conclude that out of the given options, add solid NaOH to the reaction (assume no volume change) will decrease the amount of work the system could perform.