Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
sin(x)^4 - sin(x)^2 = cos(x)^4 - cos(x)^2
sin(x)^2 = 1 - cos(x)^2:
sin(x)^4 - 1 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
-(1 - cos(x)^2) = cos(x)^2 - 1:
cos(x)^2 - 1 + sin(x)^4 = ^?cos(x)^4 - cos(x)^2
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-1 + cos(x)^2 + (1 - cos(x)^2)^2 = ^?cos(x)^4 - cos(x)^2
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = ^?cos(x)^4 - cos(x)^2
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = cos(x)^4 - cos(x)^2:
cos(x)^4 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
Answer:
![\boxed{5 \cdot \sqrt{2} \cdot \sqrt[6]{5} }](https://tex.z-dn.net/?f=%5Cboxed%7B5%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%7D)
Step-by-step explanation:
![\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)
![\sqrt{\sqrt[3]{10} } \implies (10^\frac{1}{3} )^\frac{1}{2} =10^\frac{1}{6} =\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%20%5Cimplies%20%2810%5E%5Cfrac%7B1%7D%7B3%7D%20%29%5E%5Cfrac%7B1%7D%7B2%7D%20%3D10%5E%5Cfrac%7B1%7D%7B6%7D%20%3D%5Csqrt%5B6%5D%7B10%7D)
![\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%3D%5Csqrt%5B6%5D%7B10%7D)
![\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Ctext%7BSolving%20%7D%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)

![\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5 \sqrt[3]{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%3D%5Csqrt%5B3%5D%7B2%5Ccdot%205%5E3%7D%3D5%20%20%5Csqrt%5B3%5D%7B2%7D)
Once
![\sqrt[6]{2} \cdot \sqrt[6]{5} = \sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%20%5Csqrt%5B6%5D%7B10%7D)
We have
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
We can proceed considering the common base of exponentials
![\sqrt[3]{2} \cdot \sqrt[6]{2} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{6} } = 2^{\frac{3}{6} } = 2^{\frac{1}{2} }=\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%3D%20%202%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ccdot%20%202%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%20%20%3D%202%5E%7B%5Cfrac%7B3%7D%7B6%7D%20%7D%20%3D%202%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%7B2%7D)
Therefore,
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5} = 5 \cdot \sqrt{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%205%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
no it is more than 4x it is 6x
<span>38 - 7r = 3(6 - 4r)
38 - 7r = 18 - 12r
-7r + 12r = 18 - 38
5r = -20
r = -4</span>
Answer:
$6.66 and $7.04
Please give me brainliest, I really need it.