Answer:
Hans-Georg Gadamer (1900-2002) was an influential German philosopher of the twentieth century, inspiring a variety of scholastic disciplines from aesthetics to theology. In suggesting understanding was interpretation and vice versa, Gadamer identifies language acting as the medium for understanding. Gadamer’s philosophy of hermeneutics has major implications for education and formal schooling because Hermeneutics help to know the knowledge a student has prior to the lesson. This helps in the dialogue about a subject matter and therefore, the philosophy of Hermeneutics when applied in classroom helps the teachers pass information easily and effectively, hence, the learners capture the whole content of a topic.
Explanation:
Answer:
Static Friction - acts on objects when they are resting on a surface
Sliding Friction - friction that acts on objects when they are sliding over a surface
Rolling Friction - friction that acts on objects when they are rolling over a surface
Fluid Friction - friction that acts on objects that are moving through a fluid
Explanation:
Examples of static include papers on a tabletop, towel hanging on a rack, bookmark in a book
, car parked on a hill.
Example of sliding include sledding, pushing an object across a surface, rubbing one's hands together, a car sliding on ice.
Examples of rolling include truck tires, ball bearings, bike wheels, and car tires.
Examples of fluid include water pushing against a swimmer's body as they move through it , the movement of your coffee as you stir it with a spoon, sucking water through a straw, submarine moving through water.
Answer:
27 m/s
Explanation:
Given:
v₀ = 15 m/s
a = 3 m/s²
t = 4 s
Find: v
v = at + v₀
v = (3 m/s²) (4 s) + (15 m/s)
v = 27 m/s
The measurement of sound is in decibels.
Answer:
a) b) d)
Explanation:
The question is incomplete. The Complete question might be
In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.
a)2 N; 2 N
b) 200 N; 200 N
c) 200 N; 201 N
d) 2 N; 2 N; 4 N
e) 2 N; 2 N; 2 N
f) 2 N; 2 N; 3 N
g) 2 N; 2 N; 5 N
h ) 200 N; 200 N; 5 N
For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces
a) 2+(-2)=0 here minus sign is to show the opposing firection of force
b) 200+(-200)=0
c) 200+(-201)
0
d) 2+2+(-4)=0
e) 2+2+(-2)
0
f) 2+2+(-3)
0; 2+(-2)+3
0
g) 2+2+(-5)
0; 2+(-2)+5
0
h)200 + 200 +(-5)
0; 200+(-200)+5
0