Answer:
5.702 mol K₂SO₄
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Compounds
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 993.6 g K₂SO₄
[Solve] moles K₂SO₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of K: 39.10 g/mol
[PT] Molar Mass of S: 32.07 g/mol
[PT] Molar mass of O: 16.00 g/mol
Molar Mass of K₂SO₄: 2(39.10) + 32.07 + 4(16.00) = 174.27 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
5.7015 mol K₂SO₄ ≈ 5.702 mol K₂SO₄
Answer:
Either Carnivores or Heterotrophic.
Explanation:
Carnivorous organisms are the more obvious answers in this, but if you want a bit of pizazz, throw in Heterotrophic Fungi.
Answer:
It is a covalent bond because both carbon and oxygen are nonmetals. The formula will be CO² because the electrons between the atoms are being shared equally.
Answer:
0.171 grams of oxygen combined with the metal.
Explanation:

Mass of magnesium oxide produced = 0.421 g
Mass of magnesium metal used = 0.250 g
Suppose reaction completely converts the magnesium into magnesium oxide.
Mass of oxygen combined with magnesium = m
0.421 g = 0.250 g + m
m = 0.421 g - 0.250 g = 0.171 g
0.171 grams of oxygen combined with the metal.