False if there is a negative exponent move it to the other side for the fraction
Let's find the difference between each number.
38-14=24
74-38=36
122-74=48
182-122=60
254-182=72
As you can tell, you're adding 12 to each difference before. The next difference would be 72+12=84. Let's add.
254+84=338
Now the next difference would be 84+12=96.
338+96=434
So, the next two terms are 338 and 434.
Answer:
yes.<em> </em><em>2</em><em> </em><em>is</em><em> </em><em>an</em><em> </em><em>only</em><em> </em><em>even</em><em> </em><em>prime</em><em> </em><em>number</em><em>. </em>
Step-by-step explanation:
<em>Prime</em><em> </em><em>number</em><em> </em><em>means</em><em> </em><em>a</em><em> </em><em>number</em><em> </em><em>that</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>exactly</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>1</em><em> </em><em>and</em><em> </em><em>itself</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>prime</em><em> </em><em>number</em><em>. </em>
<em>2</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>1</em><em> </em><em>and</em><em> </em><em>2</em>
<em>prime</em><em> </em><em>number</em><em> </em><em>has</em><em> </em><em>only</em><em> </em><em>two</em><em> </em><em>factors</em><em>. </em>
<em>FOR</em><em> </em><em>Example</em><em>:</em><em> </em><em>13</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer: here
Step-by-step explanation:riangles QST and RST are similar. Therefore, the following is true:
q s
--- = ---- This results in 10q=rs.
r 10
Also, since RST is a right triangle, 4^2 + s^2 = q^2.
Since QST is also a right triangle, s^2 + 10^2 = r^2.
4 s
Also: ---- = ----- which leads to s^2 = 40
s 10
Because of this, 4^2 + s^2 = q^2 becomes 16 + 40 = 56 = q^2
Then q = sqrt(56) = sqrt(4)*sqrt(14) = 2*sqrt(14) (answer)
hope it helps