Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
Answer:
In waves distance is measured by wave length and time is measured by frequency or period.
velocity ratio=wave length multiply by frequency.
HENCE, if the same wave travels for 2 econds its frequency will be 2Hz.
Explanation:
<em>The answer is </em>Ninth <em>and </em>Tenth <em>grade so the answer would be</em> B
<em>I hope this helps you </em>
Answer:
3.32 m/s
Explanation:
From the law of conservation of energy, the sum of mechanical and kinetic energy should be equal to the 10 J given. Potential energy is given by mgh where m is mass, g is acceleration due to gravity and h is the height. For this case,
and l is string length, given as 2 m, \theta is given as 50 degrees. Kinetic energy is given by
and it is this velocity that is unknown.
