Find the critical points of
:


All three points lie within
, and
takes on values of

Now check for extrema on the boundary of
. Convert to polar coordinates:

Find the critical points of
:



where
is any integer. There are some redundant critical points, so we'll just consider
, which gives

which gives values of

So altogether,
has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).
Answer: the number of adult tickets sold is 400
the number of student tickets sold is 200
Step-by-step explanation:
Let x represent the number of adult tickets sold at the play.
Let y represent the number of student tickets sold at the play.
Adult tickets to a play cost $1.75 each and student tickets cost $1.25 each. If the income from the play was $1,700, it means that
1.75x + 1.25y = 1700 - - - - - - - - - -1
Suppose there are twice as many student tickets sold as adult tickets. This means that
y = 2x
Substituting y = 2x into equation 1, it becomes
1.75x + 1.25 × 2x = 1700= 1700
1.75y + 2.5y = 1700
4.25y = 1700
y = 1700/4.25 = 400
x = y/2 = 400/2 = 200
Answer:
6x² + 15
6
Step-by-step explanation:
Let the number be x.
"the square of a number"
x²
"the product of 6 and the square of a number"
6x²
"the product of 6 and the square of a number plus 15"
6x² + 15
The coefficient is the number that multiplies the variable, so it is 6.