Answer:
The FitnessGram™ Pacer Test is a multistage aerobic capacity test that progressively gets more difficult as it continues. The 20 meter pacer test will begin in 30 seconds. Line up at the start. The running speed starts slowly, but gets faster each minute after you hear this signal. [beep] A single lap should be completed each time you hear this sound. [ding] Remember to run in a straight line, and run as long as possible. The second time you fail to complete a lap before the sound, your test is over.
Steven Ginsberg named managing editor of The Washington Post, rounding out senior management team
Answer:
When you measure distance, you are mesauring lenght.
Explanation:
When you meausre volume, you measure an object in its three dimensions.
When you measure speed, you measure a relation between lenght and time.
When you measure mass, you measure weight.
Answer:
b. Second order in NO and first order in O₂.
Explanation:
A. The mechanism
![\rm 2NO\xrightarrow[k_{-1}]{k_{1}}N_{2}O_{2} \, (fast)\\\rm N_{2}O_{2} + O_{2}\xrightarrow{k_{2}} 2NO_{2} \, (slow)](https://tex.z-dn.net/?f=%5Crm%202NO%5Cxrightarrow%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7DN_%7B2%7DO_%7B2%7D%20%5C%2C%20%28fast%29%5C%5C%5Crm%20N_%7B2%7DO_%7B2%7D%20%2B%20O_%7B2%7D%5Cxrightarrow%7Bk_%7B2%7D%7D%202NO_%7B2%7D%20%5C%2C%20%28slow%29)
B. The rate expressions
![-\dfrac{\text{d[NO]} }{\text{d}t} = k_{1}[\text{NO]}^{2} - k_{-1} [\text{N}_{2}\text{O}_{2}]^{2}\\\\\rm -\dfrac{\text{d[N$_{2}$O$_{2}$]}}{\text{d}t} = -\dfrac{\text{d[O$_{2}$]}}{\text{d}t} = k_{2}[ N_{2}O_{2}][O_{2}] - k_{1} [NO]^{2}\\\\\dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= k_{2}[ N_{2}O_{2}][O_{2}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BNO%5D%7D%20%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BNO%5D%7D%5E%7B2%7D%20-%20k_%7B-1%7D%20%5B%5Ctext%7BN%7D_%7B2%7D%5Ctext%7BO%7D_%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5C%5Crm%20-%5Cdfrac%7B%5Ctext%7Bd%5BN%24_%7B2%7D%24O%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D%20-%20k_%7B1%7D%20%5BNO%5D%5E%7B2%7D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D)
The last expression is the rate law for the slow step. However, it contains the intermediate N₂O₂, so it can't be the final answer.
C. Assume the first step is an equilibrium
If the first step is an equilibrium, the rates of the forward and reverse reactions are equal. The equilibrium is only slightly perturbed by the slow leaking away of N₂O₂ to form product.
![\rm k_{1}[NO]^{2} = k_{-1} [N_{2}O_{2}]\\\\\rm [N_{2}O_{2}] = \dfrac{k_{1}}{k_{-1}}[NO]^{2}](https://tex.z-dn.net/?f=%5Crm%20k_%7B1%7D%5BNO%5D%5E%7B2%7D%20%3D%20k_%7B-1%7D%20%5BN_%7B2%7DO_%7B2%7D%5D%5C%5C%5C%5C%5Crm%20%5BN_%7B2%7DO_%7B2%7D%5D%20%3D%20%5Cdfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D)
D. Substitute this concentration into the rate law
![\rm \dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= \dfrac{k_{2}k_{1}}{k_{-1}}[NO]^{2} [O_{2}] = k[NO]^{2} [O_{2}]](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20%5Cdfrac%7Bk_%7B2%7Dk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D%20%3D%20k%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D)
The reaction is second order in NO and first order in O₂.
Plasma has a neutral charge, as well as the same amount of protons and electrons put together. if the question has only one answer then it is plasma.