Answer:

Step-by-step explanation:
<u><em>the mean in period</em></u> 1 :
(2.3+2.1+2.2+2.2+2.2+2.1+2.4+2.5+2.2+2.0+1.9+1.9+2.1+2.2+2.3)÷15=21.733...
<u><em>the mean in period</em></u> 2 :
(2.3+2.1+3.3+1.5+3.6+1.6+3.0+1.1+4.7+2.1+2.4+1.9+2.8+0.5+2.3)÷15=23.466...
Since 23.466 > 21.733 then “The mean in period 2 is higher than the mean in period 1”.
Answer:
- L(t) = 727.775 -51.875cos(2π(t +11)/365)
- 705.93 minutes
Step-by-step explanation:
a) The midline of the function is the average of the peak values:
(675.85 +779.60)/2 = 727.725 . . . minutes
The amplitude of the function is half the difference of the peak values:
(779.60 -675.85)/2 = 51.875 . . . minutes
Since the minimum of the function is closest to the origin, we choose to use the negative cosine function as the parent function.
Where t is the number of days from 1 January, we want to shift the graph 11 units to the left, so we will use (t+11) in our function definition.
Since the period is 365 days, we will use (2π/365) as the scale factor for the argument of the cosine function.
Our formula is ...
L(t) = 727.775 -51.875cos(2π(t +11)/365)
__
b) L(55) ≈ 705.93 minutes
Answer:
Since we have the information for Angles 1 and 3, and they are vertical, we can set them equal to each other. Once we have done this we can find the measures of them combined, and subtract it from 360 in order to only have the measure of 2 and its vertical angle. Finally, all we need to do now is divide the remaining measure by 2, and this will give us the measure of angle 2.
Angle 1=Angle 3
4x+30=2x+48
2x+30=48
2x=18
x=9
Angle 1=4(9)+30
Angle 1=36+30
Angle 1=66
Angle 1=Angle 3
Angle 1+ Angle 3=132
360-132=228
228/2=114
Angle 2= 114
Answer:
The answer is C.
Step-by-step explanation:
Answer:
a
Step-by-step explanation:
ssdsdaaaaashjkkkllbhgdsfiii