Mass is the measure of the amount of matter in an object.
The gravity on <span>an object depends on two things: </span>mass<span> of the objects being attracted and the distance between the objects is needed to find gravity. </span>
The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
Answer:
The answer is C.
Explanation:
An ion is unlike a neutral atom in the fact that it has a charge. Because electrons are negatively charged, an atom becomes more positive if electrons are lost.
There is no definite end to earths atmosphere, but technically the border between the outer space and earth gets thinner as you move up from the earths surface. The Karman line is the closest definition there is which describes the end of the earth's atmosphere, it is 100 km above earth's sea level at approximately 1.56 % of total earth's radius. This describes the boundary between the outer space and the atmosphere.
Explanation:
You are given the initial velocity, the displacement, and the acceleration. You're looking for the final velocity. So you use the equation:
v² = v₀² + 2aΔy
When you solve for v, you take the square root. Your calculator will return a positive answer, but there are actually two possible answers: positive and negative.
v = ±√(v₀² + 2aΔy)
You must use the physical context of the problem. If we take up to be the positive direction, then v must be negative, since the projectile is moving down.