Answer:
Mars and Earth are two of the planets of the solar system. Some of the ways in which Mars is different from Earth are as follows-
- The size of the earth is bigger than Mars as Earth has a radius of nearly 6400 km, whereas Mars has a radius of about 3400 km.
- The atmosphere of earth is primarily comprised of gases such as 78% of Nitrogen (N₂), 21% of Oxygen (O₂), 0.03% of Carbon dioxide (CO₂), and 0.9% of Argon (Ar), whereas the atmosphere of Mars is mainly comprised of 95% of CO₂, 3% of molecular N₂, and 2% of Ar.
- The surface gravity also marks a contrasting difference as on Mars, the gravity at the surface is only about 38%, in comparison to the gravity at the earth's surface.
We are aware that weight is the product of applied gravitational force and mass. W = MG thus, where W represents the weight, M the mass, and G the gravitational force. As a result, it might also mean that "an object's weight is directly proportionate to its mass."
<h3>What is mass?</h3>
- Mass is a physical body's total amount of matter.
- It also serves as a gauge for the body's inertia, or resistance to acceleration (change in velocity) in the presence of a net force.
- The strength of an object's gravitational pull to other bodies is also influenced by its mass.
- The kilogram is the primary mass unit in the SI (kg).
- Even though weight is frequently measured using a spring scale rather than a balancing scale and directly compared with known masses, mass is not the same as weight in physics.
<h3>What is weight?</h3>
- The force exerted on an object by gravity is known as the weight of the object in science and engineering.
- Weight is sometimes described as a vector quantity, or the gravitational force exerted on the object, in some common textbooks.
- Others define weight as a scalar quantity, the gravitational force's strength.
- Others define it as the strength of the force applied to a body as a result of systems designed to resist the effects of gravity; the weight is the amount that is determined, for instance, by a spring scale.
Learn more about mass here:
brainly.com/question/19694949
#SPJ4
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
Thank you for posting your question here at brainly. Below is the solution. I hope the answer will help.
<span>Cl^- 1s^2 2s^2p^6 3s^2 3p^6 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 17- 10 =7 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6; 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 19- 10 = 9
</span>
S = 2 + 6.8 + 2.45 = 11.25
<span>Zeff(Cl^-) = 17 – 11.25 = 5.75 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6 same S as for Cl^- but Z increases by 2 hence </span>
<span>Zeff(K^+) = 19 - 11.25 = 7.75</span>