Answer:
v = 6i + 12j + 4k
Explanation:
Find the magnitude of the direction vector.
√(3² + 6² + 2²) = 7
Normalize the direction vector.
3/7 i + 6/7 j + 2/7 k
Multiply by the magnitude of v.
v = 14 (3/7 i + 6/7 j + 2/7 k)
v = 6i + 12j + 4k
Answer:
(d) not enough info
Explanation:
because it doesn't specify where the strings are attached
if it was the two ends of the rod then T1 would be equal to T2
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:
where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,
Now using thin lens formula:
<u>f = 1 m</u>
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer:
least distance= 13mm
ratio of the lattice = 1 : 0.71 : 0.58
Explanation:
given λ₁ = 650nm = 650×10⁻⁹m, λ₂ = 500nm = 500×10⁻⁹m