Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:
Explanation:
The earth makes in 365 day 1 revolution
The earth makes in 1 day 1 / 365 revolutions
1 / 365 revolution per day
n = 1 / 365 per day .
n is called frequency of revolutions .
Angular velocity = 2π n
= 2 π x 1 / 365
= .0172 radian / day
Answer:
A ball thrown into the air has the most potential energy when it has reached the highest point above the ground before it begins descending. If we consider the vertical motion only beginning when the ball leaves the thrower’s hand, the ball is exchanging kinetic energy for (gravitational) potential energy. When all of the kinetic energy has been transformed, the ball begins falling, and exchanges it’s potential energy back into kinetic energy. If you ignore air resistance, the ball will land with as much energy as it began with.
Answer:
Acceleration of the box is 4.9 m/s².
Explanation:
The free body diagram is shown below.
The weight of the body can be resolved into two mutually perpendicular components as shown. The force responsible for sliding motion of the box along the incline is due to
acting along the incline.
Therefore, as per Newton's second law of motion,
Net force = 
Now, net force acting along the incline is only 
Therefore,

Now, 
Therefore, the acceleration of the box is given as:

Acceleration of the box is 4.9 m/s².
Answer:
A 2 d vector model
The acceleration function is -9.8 m/s2 which is gravity
Initial velocity on the Y axis is 0, on the X axis is 12 m/s
Inital position is 20 mts above the ground.
It takes the water 1.01 seconds to reach the other building.
THe distace from one building to the other is 12.11 meters.
Explanation:
In order to solve this you just need to carefully read the problem and the data you are given, and use the formula for height in free fall:

So first the data, we know that the water is coming out at a height of 20 meters since the building is 19 meters tall and the fireman is holding the firehose 1 meter above it, and the water is hitting the second building at a height of 15 meters, that means that the water is travelin -5meters.
Gravity as it doesn´t say otherwise would be 9.8m/s2 since that is gravity on earth, and water is leaving the firehose at 12m/s horizontally.
We can calculate the time by using the height formula fro free fall:

So it takes 1.009 seconds for the water to frop from 20 to 15 meters, as the horizontal velocity remains the same we just multiply it by the time and we get the horizontal distance between the two buildings and that would be:
12.11 meters.