A planetary surface is where the solid (or liquid) material of the outer crust on certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs).[1][2][3] The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus of a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.
In differentiated bodies, the surface is where the crust meets the planetary boundary layer. Anything below this is regarded as being sub-surface or sub-marine. Most bodies more massive than super-Earths, including stars and gas giants, as well as smaller gas dwarfs, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.
Planetary surfaces and surface life are of particular interest to humans as it is the primary habitat of the species, which has evolved to move over land and breathe air. Human space exploration and space colonization therefore focuses heavily on them. Humans have only directly explored the surface of Earth and the Moon. The vast distances and complexities of space makes direct exploration of even near-Earth objects dangerous and expensive. As such, all other exploration has been indirect via space probes.
Indirect observations by flyby or orbit currently provide insufficient information to confirm the composition and properties of planetary surfaces. Much of what is known is from the use of techniques such as astronomical spectroscopy and sample return. Lander spacecraft have explored the surfaces of planets Mars and Venus. Mars is the only other planet to have had its surface explored by a mobile surface probe (rover). Titan is the only non-planetary object of planetary mass to have been explored by lander. Landers have explored several smaller bodies including 433 Eros (2001), 25143 Itokawa (2005), Tempel 1 (2005), 67P/Churyumov–Gerasimenko (2014), 162173 Ryugu (2018) and 101955 Bennu (2020). Surface samples have been collected from the Moon (returned 1969), 25143 Itokawa (returned 2010), 162173 Ryugu and 101955 Bennu.
2n² rule:
This rule is used to determine number of electrons in particular shell.
n=1 means K shell
n=2 means L shell
n=3 means M shell
n=4means N shell
The first K shell can hold upto 2 electrons, L shell can hold up to 8, third M shell can hold up to 18and the fourth N shell can hold upto 32 electrons. This rule of arrangement of electrons according to the shell is known 2n2 rule where n means number of shell.
For example: There is one proton in the nucleus of hydrogen atom, which moves in K shell path. It has no neutron.
Answer:
The Law of Conservation of Energy states that energy cannot be created or destroyed. In other words, the total energy of a system remains constant. This is an important concept to remember when dealing with energy problems. The two basic forms of energy that we will focus on are kinetic energy and potential energy.
Explanation:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
Im bad at these questions hope it helps and have a good day.
Answer :
The atomic mass is the sum of the number of protons and neutrons in the nucleus of an atom.
Explanation :
Atomic number : it is defined as the number of protons or number of electrons.
Atomic number = number of protons = number of electrons
Mass number or atomic mass : It is defined as the sum of the number of protons and the number of neutrons.
Mass number or atomic mass = Number of protons + Number of neutrons
For example :
Number of protons in carbon = 6
Number of neutrons in carbon = 6
Mass number or atomic mass = Number of protons + Number of neutrons
Mass number or atomic mass = 6 + 6
Mass number or atomic mass = 12
Thus, the atomic mass is the sum of the number of protons and neutrons in the nucleus of an atom.