Wind abrades rock by sandblasting, this is the process in which wind causes the
According to Gayle Lusac's law, pressure is proportional to absolute temperature of a gas. Thus:
P/T = constant
So if the temperature becomes 3T, the pressure would increase to 3P
The enthalpy change in a reaction is given by-
ΔH°rxn = ∑nΔH°f,products - ∑nΔH°f,reactants
This can be expressed in terms of bond energy as-
ΔH°rxn = BEreactants - BEproducts
Therefore, the calculated bond energy according to the above equation will be-
ΔH°rxn = [ (C-C) + 2(C-O) + 4(C-H) + 2(O-H) ] - [ (C-C) + 2(C-O) + 4(C-H) + 2(O-H) = 0 kJ/mol
<h3>What is enthalpy change?</h3>
Enthalpy change is a measure of the energy emitted or consumed in a reaction. This can be determined using the following equation which involves standard enthalpy of reactant and product formation:
ΔH°rxn = ∑nΔH°f,products - ∑nΔH°f,reactants
<h3>What is bond energy?</h3>
Bond energy is defined as the amount of energy needed to dissociate a mole of molecules into their individual atoms.
Learn more about the Enthalpy Change here:
brainly.com/question/14047927
#SPJ4
The claim is that NaCl mixture is a homogeneous mixture.
Homogeneous mixture means that the components of the mixtures cannot be determined or separated by the naked eye. However, these components can be separated using physical means, such as boiling, evaporation and condensation which will be used in this experiment.
First, we need to prepare one molar solution of NaCl. To do so, we will dilute a mass of 58.44 grams (molar mass of NaCl) in 1 liter of water.
By this, we will have NaCl solution.
We can notice that once the NaCl is diluted in water, all what you can see is a clear solution. You cannot see the separate particles of NaCl in water.
..............> observation I
Now, we will heat this solution until it boils and water starts evaporating. We will place a cold surface above the steam coming out from the boiling solution.
What we will observe is that when all the water evaporates, we can see white precipitate of NaCl in the bottom of the container. Examining the cold surface placed above the steam, we can see that the water has condensed on this surface.
.........>observation II
Based on this, we managed to use boiling, evaporation and condensation (physical methods) to restore the components of the solution separately.
.............>conclusion
Based on observation I, observation II and the conclusion. we were able to prove that NaCl solution is a homogeneous mixture.
Answer:

Explanation:
To convert from moles to grams, the molar mass must be used.
1. Find Molar Mass
The compound is iron (III) chloride: FeCl₃
First, find the molar masses of the individual elements in the compound: iron (Fe) and chlorine (Cl).
There are 3 atoms of chlorine, denoted by the subscript after Cl. Multiply the molar mass of chlorine by 3 and add iron's molar mass.
- FeCl₃: 3(35.45 g/mol)+(55.84 g/mol)=162.19 g/mol
This number tells us the grams of FeCl₃ in 1 mole.
2. Calculate Moles
Use the number as a ratio.

Multiply by the given number of grams, 345.0.

Flip the fraction so the grams of FeCl₃ will cancel.



Divide.

3. Round
The original measurement of grams, 345.0, has 4 significant figures. We must round our answer to 4 sig figs.
For the answer we calculated, that is the thousandth place.
The 1 in the ten thousandth place tells us to leave the 7 in the thousandth place.

There are about <u>2.127 mole</u>s of iron (III) chloride in 345.0 grams.