Answer:
The molar solubility of carbon dioxide gas is
.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = 
= partial pressure of carbonated drink

where = p = Total pressure = 0.400 atm
= mole fraction of 

Putting values in above equation, we get:

Hence, the molar solubility of carbon dioxide gas is
.
When aluminum metal is made to contact with chlorine gas (Cl₂), a highly exothermic reaction proceeds. This produces aluminum chloride (AlCl₃) powder. The balanced chemical equation for this reaction is shown below:
2Al(s) + 3Cl₂(g) → 2AlCl₃(s)
Since it was stated that aluminum is in excess, this means that the amount of AlCl₃ produced will only depend on the amount of Cl₂ gas available. The molar mass of Cl₂ is 70.906 g/mol. Using stoichiometry, we have the following equation:
(21.0 g Cl₂/ 70.906 g/mol Cl₂) x 2 mol AlCl₃/ 2 mol Cl₂ = 0.1974 mol AlCl₃
Thus, we have determined that 0.1974 <span>moles of aluminum chloride can be produced from 21.0 g of chlorine gas. </span>
Answer:
0.01185M = moles/0.02755L
0.02755*0.01185=0.00032647
Explanation:
srry the pic is not clear......
l cant see it.....
Answer:
oceanic formation is the right answer.
Explanation:
this os becoz they slide a past each other and do not rub against each other