Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)
822 hours. 10.25x822 is $8,425.50.
Answer:
Angle 1 = 39, Angle 2 = 78 , Angle 3 = 63
Step-by-step explanation:
78/2 = 39
(Angle 2/2 = Angle 1)
78 - 15 = 63
(Angle 2 - 15 = Angle 3)
39 + 78 + 63 = 180
(Angle 1 + Angle 2 + Angle 3 = 180)
Answer:
x=3.50
Step-by-step explanation:
2*3.50=7
7-1=6
3+6=9
9+11=20
Answer:
y = 460 miles per hr
x = 500 miles per hr
Step-by-step explanation:
Let the planes be X any
Let their speeds be xmiles/hr and ymiles/hr respectively
x = y + 40 (assuming X is faster by 40miles/hr)
Distance travelled by X to meet Y = 0.75x
Distance travelled by Y to meet X = 0.75y
0.75x + 0.75y = 720 --------1
Put x = y + 40 in eqn 1
0.75(y+40) + 0.75y = 720
0.75y + 30 + 0.75y= 720
1.5y = 690
y = 460 miles per hr
x = 460 +40
= 500 miles per hr