Answer:
a) 13% of people did not experience problems with an online transaction.
b) 36.54% of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website
c) 46.11% of people experienced problems with an online transaction and contacted customer-service representatives.
Step-by-step explanation:
a. What percentage of people did not experience problems with an online transaction?
87% of people have experienced problems with an online transaction. So 100 - 87 = 13% of people did not experience problems with an online transaction.
b. What percentage of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website?
87% of people have experienced problems with an online transaction. Forty-two percent of people who experienced a problem abandoned the transaction or switched to a competitor′s website.
Then:
0.87*0.42 = 0.3654
36.54% of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website.
c. What percentage of people experienced problems with an online transaction and contacted customer-service representatives?
87% of people have experienced problems with an online transaction. Fifty-three percent of people who experienced problems contacted customer-service representatives.
Then:
0.87*0.53 = 0.4611
46.11% of people experienced problems with an online transaction and contacted customer-service representatives.
I believe the answer is 81x^4-16x^2 difference of squares
If the parallel sides are the same length, then the figure must be a parallelogram. You can prove this by dividing the parallelogram into two triangles, and then using SAS (side angle side) to prove the triangles congruent, which leads to you showing the corresponding angles are the same measure, therefore the other set of sides must be parallel as well.
Or
If the non parallel sides are the same length, then you have an isosceles trapezoid. A trapezoid is any figure with exactly one pair of parallel sides. An isosceles trapezoid is one where the non-parallel sides are the same length. The non-parallel sides are sometimes considered the legs of the trapezoid (and the parallel sides are the bases).
Or
If you have two adjacent sides that are same length, and you have one set of parallel sides, then you could have a trapezoid (not isosceles but just a more generalized trapezoid)
Easy
y=a(x-h)^2+k
vertex is (h,k)
we know that vertex is (4,0)
input that point for (h,k)
y=a(x-4)^2+0
y=a(x-4)^2
passes thorugh the point (6,1)
input that point to find a
1=a(6-4)^2
1=a(2)^2
1=a(4)
divide both sides by 4
1/4=a
thefor the equation is
y=(1/4)(x-4)^2
or
y=(1/4)x^2-2x+4