Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.
Answer:
D: The side of Magnet A that's attracted to Magnet B's south pole must be Magnet A's north pole
Explanation:
D: The side of Magnet A that's attracted to Magnet B's south pole must be Magnet A's north pole because
1) opposite poles attract each other
2) similar poles repel each other
3)magnetic lines of force start at the north pole and end at the south pole
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic
Answer:
E = 1440 kJ
Explanation:
It is given that,
Power of a cooker oven is 800 W
Voltage at which it is operated is 230 V
Time, t = 30 minutes = 1800 seconds
We need to find the electrical energy used by the cooker oven. The product of power and time is equal to the energy consumed. So,

So, electrical energy of 1440 kJ is consumed by the cooker oven.