All of that fluff at the beginning is interesting, but completely irrelevant
to the question. The question is just asking for the mass of an object
that weighs 3.6N on Earth.
Weight = (mass) x (acceleration of gravity)
3.6N = (mass) x (9.8 m/s²)
Divide each side
by 9.8 m/s : Mass = 3.6N / 9.8 m/s² = <em>0.367 kilogram</em> (rounded)
Amethyst... because it's silicon dioxide
Answer:
(b) To get m3 to slide, m1 must be increased, never decreased.
Explanation:
Lab experiments require attentiveness. If there is one thing missed or not taken seriously whole experiment could go wrong. In this case to slide m3 there should be more weight at m1. If the weight of m1 is lesser than m3 then the object will not slide. It will remain at the point where there is more weight. To slide an object there must be less frictional surface and more weight placed at the desired end point.
Answer;
- No, Two vectors of unequal magnitude can never sum to zero.
Explanation;
-Two vectors of equal magnitude that are pointing in opposite directions will sum to zero.
-Two vectors of unequal magnitude can never sum to zero. If they point along the same line, since their magnitudes are different, the sum will not be zero.
- If they point in different directions, then you can always decompose one vector into two components: one along the other vector and one perpendicular to the other vector. In this case, the perpendicular component can never be eliminated.
I think they can use more durable materials.