Answer:
1. Main sequence stars have different masses. The common characteristic they have is their source of energy. They burn fuel in their core through the process of fusing hydrogen atoms into helium.
2. Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
3. Supergiants develop when massive main-sequence stars run out of hydrogen in their cores.
4. a supernova occur When the pressure drops low enough in a massive star, gravity suddenly takes over and the star collapses in just seconds. This collapse produces the explosion.
5. when a star has reached the end of its life and explodes in a brilliant burst of light
Explanation:
Answer:
(a) Covalent bond. NF₃ (nitrogen trifluoride)
(b) Ionic bond. LiCl (lithium chloride)
Explanation:
<em>(a) N and F</em>
Nitrogen and fluorine are nonmetals, with high and similar electronegativities, so they form covalent bonds, in which they share pairs of electrons to complete the octet in their valence shell. N has 5 valence electrons so it will form 3 covalent bonds while each Cl has 7 valence electrons so it will form 1 covalent bond. As a result, the empirical formula is NF₃ (nitrogen trifluoride).
<em>(b) Li and Cl</em>
Lithium is a metal and Chlorine is a nonmetal. They have different electronegativities so they form an ionic bond, in which Cl gains 1 electron (7 valence e⁻) and Li loses 1 electron (1 valence e⁻). The empirical formula is LiCl (lithium chloride).
Answer: Solution A : ![[H_3O^+]=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
Solution B : ![[OH^-]=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
Solution C : ![[OH^-]=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration and pOH is calculated by taking negative logarithm of hydroxide ion concentration.

![[H_3O^+][OH^-]=10^{-14}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%5BOH%5E-%5D%3D10%5E%7B-14%7D)
a. Solution A: ![[OH^-]=3.33\times 10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.33%5Ctimes%2010%5E%7B-7%7DM)
![[H_3O^+]=\frac{10^{-14}}{3.33\times 10^{-7}}=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B3.33%5Ctimes%2010%5E%7B-7%7D%7D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
b. Solution B : ![[H_3O^+]=9.33\times 10^{-9}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D9.33%5Ctimes%2010%5E%7B-9%7DM)
![[OH^-]=\frac{10^{-14}}{9.33\times 10^{-9}}=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B9.33%5Ctimes%2010%5E%7B-9%7D%7D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
c. Solution C : ![[H_3O^+]=5.65\times 10^{-4}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D5.65%5Ctimes%2010%5E%7B-4%7DM)
![[OH^-]=\frac{10^{-14}}{5.65\times 10^{-4}}=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B5.65%5Ctimes%2010%5E%7B-4%7D%7D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Answer:
It represents the <em>number of atoms</em> of that particular element present in the compound. In C₂H₄O₂ there are 2 Carbon atoms, 4 Hydrogen atoms and 2 Oxygen atoms.
-two significant figures
-four significant figures
-One significant figure
-four significant figures
-two significant figures
-three significant figures
-three significant figures