Answer:
The image behind the mirror is called a virtual image because it cannot be projected onto a screen—the rays only appear to originate from a common point behind the mirror. If you walk behind the mirror, you cannot see the image, because the rays do not go there
Answer:
The particles have just enough energy to move past each other.
Answer: C. good reflector of heat
Explanation:
In space, sunlight transfers heat by radiation to objects and bodies and this includes satellites and astronauts. In addition, although the peak of the sun's emission is in the visible region of the electromagnetic spectrum, a part is also emitted in infrared (transferring thermal energy or heat) and ultraviolet (especially in the upper part of the Earth's atmosphere).
That is why in space missions, objects and many satellites are covered by thin layers or sheets that reflect this thermal energy and thus avoid damaging the equipment due to high temperatures.
In this sense, among the reflective materials used are aluminum, silver, copper and gold; the latter being the most used because it does not corrode or oxidize (unlike silver and copper) and is more malleable than aluminum.
On the other hand, <u>astronauts are also vulnerable to the effects of infrared radiation, especially their eyes</u>, since the human eye has no receptors in the infrared spectrum. <u>That is why the astronaut's helmet visor is covered with a thin layer of gold to avoid the dangerous effects of solar radiation.</u>
Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
I don’t think so because an ice cube melting needs heat and relies on temp while ooblecks transition from solid to quickly depends on force and speed