1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
2 years ago
8

In your own words, describe why melting ice with salt freezes cream. Compare your descriptions to your classmates and describe h

ow you could change the setup to freeze the cream faster, to produce colder temperatures or to cool other substances.
Physics
1 answer:
gizmo_the_mogwai [7]2 years ago
3 0

Answer:

Water normally freezes at 0°C (32°F). Salt lowers the freezing temperature. (That is, it can remain a liquid at much lower temperatures.)

When sprinkled on ice, the salt lowers the freezing temperature of the water which effectively melts the ice when the salt dissolves into it. There is a limit to how low it can reduce the temperature, though. If the temperature drops below -9°C (15°F), it's too cold for the salt to dissolve into the ice.

When making ice cream, the salt lowers the temperature of the ice and water sufficiently enough to freeze the cream.

You might be interested in
Two objects with the same mass move with the same speed but in opposite directions. Compare their kinetic energies.
ddd [48]

Answer:

A.  Kinetic energies are equal.

Explanation:

The kinetic energy of the bodies will be equal since the mass and speed are the same.

Kinetic energy is the energy due to the motion of a body.

Mathematically;

           K.E  = \frac{1}{2} m v²

m is the mass

v is the speed

 The kinetic energy is a scalar quantity with no regard for direction.

5 0
3 years ago
Read 2 more answers
You place a light bulb 8 cm in front of a concave mirror. You then move a sheet of paper back and forth in front of the mirror.
Alika [10]

sorry - late reply...just stumbled across tis...hope u can still use it :)


By the mirror equation: 1/di + 1/do = 1/f

<span>
</span>

<span>where di = distance to image = +12cm (+ for real image)</span>


and do = distance to object = +8cm


Substitute and solve for f, the focal length

<span><span>
1/12 + 1/8 = 1/f
</span><span>
1/f = (8 + 12) / 12 * 8 = 20/96
</span><span>
so f = 96/20 = 4.8 cm</span>
</span>
5 0
3 years ago
Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The long
nordsb [41]

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

R = \dfrac{\rho L }{A}

where;

A = πr²

R = \dfrac{\rho L }{\pi r ^2}

For the shorter cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{ 4 \rho L }{\pi \ D   ^2}

For the longer cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{32\rho L }{\pi \ (4 D)   ^2}

R = \dfrac{2\rho L }{\pi \ (D)   ^2}

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D   ^2}}{ \dfrac{2\rho L }{\pi \ (D)   ^2}}

\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D   ^2}}* { \dfrac  {\pi \ (D)   ^2} {2\rho L}}

\dfrac{R_s}{R_L} =2

{R_s}=2{R_L}

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

7 0
2 years ago
A wad of clay of mass m1 = 0.49 kg with an initial horizontal velocity v1 = 1.89 m/s hits and adheres to the massless rigid bar
notka56 [123]

Answer:

<h2>The angular velocity just after collision is given as</h2><h2>\omega = 0.23 rad/s</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>

Explanation:

As per given figure we know that there is no external torque about hinge point on the system of given mass

So here we will have

L_i = L_f

now we can say

m_1v_1\frac{L}{2} = (m_2L^2 + m_1(\frac{L}{2})^2)\omega

so we will have

0.49(1.89)(0.45) = (2.13(0.90)^2 + 0.49(0.45)^2)\omega

\omega = 0.23 rad/s

Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass

So we can use angular momentum conservation about the hinge point

6 0
3 years ago
A beam of light converging to the point of 10 cm is incident on the lens. find the position of the point image if the lens has a
Verizon [17]

Answer:

beam of light converges to a point A. A lens is placed in the path of the convergent beam 12 cm from P.

To find the point at which the beam converge if the lens is (a) a convex lens of focal length 20 cm, (b) a concave lens of focal length 16 cm

Solution:

As per the given criteria,

the the object is virtual and the image is real (as the lens is placed in the path of the convergent beam)

(a) lens is a convex lens with

focal length, f=20cm

object distance, u=12cm

applying the lens formula, we get

f

1

=

v

1

−

u

1

⟹

v

1

=

f

1

+

u

1

⟹

v

1

=

20

1

+

12

1

⟹

v

1

=

60

3+5

⟹v=7.5cm

Hence the image formed is real, at 7.5cm from the lens on its right side.

(b) lens is a concave lens with

focal length, f=−16cm

object distance, 12cm

applying the lens formula, we get

f

1

=

v

1

−

u

1

⟹

v

1

=

f

1

+

u

1

⟹

v

1

=

−16

1

+

12

1

⟹

v

1

=

48

−3+4

⟹v=48m

Hence the image formed is real, at 48 cm from the lens on the right side.

6 0
2 years ago
Other questions:
  • "Which particle builds a static electric charge when it is transferred from one object to another?
    11·1 answer
  • A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity
    15·2 answers
  • 3. Using the F, m, a triangle, calculate the boy's mass. Use the "force
    8·1 answer
  • What number is between 2000 and 2500
    13·1 answer
  • A ship tows a submerged cylinder, which is 1.5 m in diameter and 22 m long, at 5 m/s in fresh water at 208C. Estimate the towing
    13·2 answers
  • A rifle is aimed horizontally at a target 50.0 m away. The bullet hits the target 2.90 cm below the aim point. . . Whats the bul
    14·1 answer
  • at a certain moment, an object has an amount of 200 of motion energy and 400 of gravitational potential energyThe object is also
    9·1 answer
  • You are traveling at 55 mi/h along the x-axis relative to a straight, level road and pass a car that is traveling at 45 mi/h. Th
    15·1 answer
  • Even if all stars were the same distance from Earth, their absolute magnitude and
    12·1 answer
  • Aliya deposited half as much money in a savings account earning 1.9% simple interest as she invested in a money market account t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!