The distance D where the object comes to rest is 1.08.m.
<h3>What is the distance?</h3>
- The separation of one thing from another in space; the distance or separation in space between two objects, points, lines, etc.; remoteness. The distance of seven miles cannot be accomplished in one hour of walking.
- Learn how to use the Pythagorean theorem to get the separation between two points using the distance formula. The Pythagorean theorem can be rewritten as d==(((x 2-x 1)2+(y 2-y 1)2)
- The distance between any two places is the length of the line segment separating them. By measuring the length of the line segment that connects the two points in coordinate geometry, the distance between them may be calculated.
(c) the distance D where the object comes to rest.
ΔKE ⇒ -0.25*1*9.8*D = 0-1/2*1*
⇒
⇒1.08.m
To learn more about distance, refer to:
brainly.com/question/4998732
#SPJ4
Answer:
33 Celsius is 306.15 in absolute temperature
Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream

Speed downstream

Adding both the equations


The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s