Answer:
<em>380 kHz</em>
<em></em>
Explanation:
The speed of sound is taken as 1500 m/s
The length of the fetus is 1.6 cm long
The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.
For this 1.6 cm baby, the wavelength must not exceed
λ =
of 1.6 cm =
x 1.6 cm = 0.4 cm =
0.4 cm = 0.004 m this is the wavelength of the required ultrasonic sound.
we know that
v = λf
where v is the speed of a wave
λ is the wavelength of the wave
f is the frequency of the wave
f = v/λ
substituting values, we have
f = 1500/0.004 = 375000 Hz
==> 375000/1000 = 375 kHz ≅ <em>380 kHz</em>
Answer:
i done know sorry for not answering ur question
Answer: turns to gas
Explanation:
when a liquid gets heated up the chemicals start to boil/evaporate turning the liquid into a gas
Answer:
at the speed of light (
)
Explanation:
The second postulate of the theory of the special relativity from Einstein states that:
"The speed of light in free space has the same value c in all inertial frames of reference, where
"
This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.
In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of
.