Answer:
13.2m
Explanation:
Step one:
given data
Energy= 5610J
Force F= 425N
Required
The distance traveled
Step two:
We know that work done is given as
WD= force* distance
so
5610=425*d
divide both sides by 425
d= 5610/425
d=13.2m
For a simple harmonic motion energy is given with:

Where k is a constant that depends on the type of the wave you are looking at and A is amplitude.
Let's calculate the energy of the wave using two different amplitudes given in the problem:

We can see that energy associated with the wave is 4 times smaller when we decrease its amplitude by half. So the answer should be C.
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
You have to get points to asked a question and then you can help people to get points and it you want to have friends send them inventions but it you don't have no points you can't asked quenstions
Answer:
The answer is going to be C.
Explanation:
Trust me. Im an expert in physics