Answer: 0m/s²
Explanation:
Since the forces acting along the plane are frictional force(Ff) and moving force(Fm), we will take the sum of the forces along the plane
According newton's law of motion
Summation of forces along the plane = mass × acceleration
Frictional force is always acting upwards the plane since the body will always tends to slide downwards on an inclined plane and the moving acts down the plane
Ff = nR where
n is coefficient of friction = tan(theta)
R is normal reaction = Wcos(theta)
Fm = Wsin(theta)
Substituting in the formula of newton's first law we have;
Fm-Ff = ma
Wsin(theta) - nR = ma
Wsin(theta) - n(Wcos(theta)) = ma... 1
Given
W = 562N, theta = 30°, n = tan30°, m = 56.2kg
Substituting in eqn 1,
562sin30° - tan30°(562cos30°) = 56.2a
281 - 281 = 56.2a
0 = 56.2a
a = 0m/s²
This shows that the trunk is not accelerating
Answer:
0.8 x 10^-9 kg
Explanation:
Given,
Distance ( R ) = 10 m
Force ( F ) = 3.2 x 10^-9 N
Mass ( m1 ) = 40 kg
To find : Mass ( m2 ) = ?
Formula : -
F = m1.m2 / R^2
m2 = FR^2 / m1
= 3.2 x 10^-9 x 10 / 40
= 3.2 x 10^-9 / 4
= ( 3.2 / 4 ) x 10^-9
m2 = 0.8 x 10^-9 kg
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the bullet is 
The mass of the wood is 
The height attained by the combined mass is 
Generally according to the law of energy conservation

Here
is the kinetic energy of the bullet before collision.
and
is the potential energy of the combined mass of bullet and wood at the height h which is mathematically represented as
![PE_m = [m_b + m_w] * g * h](https://tex.z-dn.net/?f=PE_m%20%20%3D%20%20%5Bm_b%20%20%2B%20m_w%5D%20%2A%20%20g%20%2A%20%20h)
So
![KE_b =PE_c = [0.005 + 0.90] * 9.8 *0.08](https://tex.z-dn.net/?f=KE_b%20%3DPE_c%20%20%20%3D%20%5B0.005%20%20%2B%200.90%5D%20%2A%209.8%20%2A0.08)
=> 
Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s