Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.
The question is a little confusing. An electromagnetic wave is radiation. One doesn’t emit the other. Take another look at the question and write it again please.
The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.
Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.
Let v represent the post-collision speed of the connected mass.
Utilize the idea of momentum.
The speed of the trains is constant both before and after a collision.
150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120
After colliding, they move at a speed of 0.122 m/s towards the direction of the right.
Learn more about velocity here-
brainly.com/question/18084516
#SPJ4
Answer:

Explanation:
The situation can be described by the Principle of Energy Conservation and the Work-Energy Theorem:

The work done on the ball due to drag is:


![W_{drag} = (0.599\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2.18\,m-3.10\,m)+\frac{1}{2}\cdot (0.599\,kg)\cdot [(7.05\,\frac{m}{s} )^{2}-(4.19\,\frac{m}{s} )^{2}]](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20%280.599%5C%2Ckg%29%5Ccdot%20%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%282.18%5C%2Cm-3.10%5C%2Cm%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%280.599%5C%2Ckg%29%5Ccdot%20%5B%287.05%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%284.19%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D)
