Answer:
A book on a table before it falls.
A yoyo before it is released.
A raised weight.
Explanation:
These are all examples of potential energy. So I hope you can find something that is comparable from the lab.
Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
Answer:
The acceleration of the body, a = 2193 m/s²
Explanation:
Given,
The mass of the body, m = 0.3 kg
The force acting on the body, F = 657.9 N
The force acting on an object is proportional to the product of mass and acceleration of the body.
F = m x a
Therefore, the acceleration of the body is
a = F / m
= 657.9 N / 0.3 kg
= 2193 m/s²
Hence, the acceleration of the body, a = 2193 m/s²
Physical
Chemical
Physical
Chemical
Chemical
Chemical
Physical
Physical
Physical
Chemical
Chemical
Physical
Physical
Physical
Chemical
Chemical
Chemical
Chemical
Physical
Chemical
Chemical
Chemical
Chemical
Chemical
Chemical
I believe this is right but double check to make sure :)
Answer:
0.16Hz
Explanation:
wavelength (λ) = 125 meters
speed (V) = 20 m/s
frequency (F) = ?
Recall that frequency is the number of cycles the wave complete in one
second. And its value depends on the wavelength and speed of the wave.
So, apply the formula V = F λ
Make F the subject formula
F = V / λ
F = 20 m/s / 125 meters
F = 0.16 Hz