Answer:
Option B is correct
Explanation:
acceleration is equal to rate of change of velocity.
Answer:
Following are the answer to this question:
Explanation:
The wave is propagating at the incident wave which focuses on the stretchy and rotational inertia features of the whole medium via a material system. For both the mechanical waves there are many two basic types of incident waves: quality management program and transverse waves.
The rumor is also known as the "Norman Rockwell", in which the environment of some of the greatest physics attempts of our time, it pays to remain suspicious when remarkable reports of historical findings are made on social media.
The time period of the simple pendulum is 2.4 seconds.
Given the data in the question;
- Time taken to swing from leftmost point to rightmost point;

- Period of the pendulum;

<h3>What is Period?</h3>
Period is the time needed for a complete cycle of vibration to pass a given point.
Period of a pendulum is the of time needed for it to complete one full back-and-forth motion. It is the time required to for the pendulum to swing from leftmost point to rightmost point and back to leftmost point.
Now, if it took the pendulum
to swing from leftmost point to rightmost point, it will also take the pendulum
to swing back to its original position( leftmost point )
Hence,
= time taken to swing from leftmost to rightmost + time taken to swing from rightmost point to leftmost point.

Therefore, the time period of the simple pendulum is 2.4 seconds.
Learn more about Time Period: brainly.com/question/27135322
Answer:
9.4 m/s
Explanation:
According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.
Therefore we can write:

where in this case:
W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)
is the initial kinetic energy of the car
is the final kinetic energy
Solving,

The final kinetic energy of the car can be written as

where
m = 661 kg is its mass
v is its final speed
Solving for v,

<span>F = ma
</span>Ff = μ*Fn
<span>Fn = Fw
</span>Fw = mg
<span>So we have: </span>
<span>Ff = μmg </span>
<span>And </span>
<span>Ff = ma </span>
<span>So... </span>
<span>μmg = ma </span><span> </span>
<span>μg = a </span>
<span>And we can solve for the acceleration: </span>
<span>(0.15)(9.81 m/s²) = a </span>
<span>a = 1.47 m/s² </span>