Answer:
1) 6 seconds
2) 60 m/s
Explanation:
Given:
Δy = 180 m
v₀ = 0 m/s
a = 10 m/s²
1) Find t.
Δy = v₀ t + ½ at²
180 m = (0 m/s) t + ½ (10 m/s²) t²
t = 6 s
2) Find v.
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (10 m/s²) (180 m)
v = 60 m/s
Answer:
0.384c
Explanation:
To find the speed of the pursuit ship relative to the cruiser you use the following relativistic equation:

u': relative speed
u: speed of the pursuit ship = 0.8c
v: speed of the cruiser = 0.6c
c: speed of light
You replace the values of the parameters to obtain u':

Hence, the relative speed is 0.384c
Answer:
- A book lying on a table - Balanced force
- An airplane cruising in level flight - Balanced
- A rock falling from a cliff - Unbalanced force
- A bridge collapsing in an earthquake - Unbalanced force
- A man sitting on a park bench - Balanced force
- A space shuttle taking off - Unbalanced force
- A car maintaining a constant speed on a straight road - Balanced force
- An airplane landing - Unbalanced force
Explanation:
Usually, one or more forces act on a body at an instant of time. When these forces acting on a body and bring the body in the equilibrium position, the force is said to be balanced. The unbalanced force changes the equilibrium state of the body.
As in the case of an airplane cruising in a level flight, the weight of the plane will be equal to the lift force and the thrust is equal to the drag. So the plane is experiencing a balanced force.
The answer is TRUE, I'm pretty sure.
Answer:
2.66 m/s² .
Explanation:
Initial velocity , u = 0 m/s
Final Velocity , v = 8 m/s
Time Taken , t = 3 s
So , Acceleration = (v-u)/t = (8 m/s - 0 m/s) /3 sec . = 8/3 m/s² = 2.66 m/s²