Answer:
The x component of the resultant force is -7.27N.
Explanation:
To obtain the x component of the resultant force, first we have to know the x components of the other forces. To do this, we just have to do some trigonometry:
Since both vectors are in the left side of the y-axis, they have a negative x component. So:
Finally, we sum both components to obtain the component of the resultant force:
In words, the x component of the resultant force is -7.27N.
Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.
The acceleration of the boxes depends on the mass and weight.
we have a mass of 7 and 8 kilograms
if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2.
It will leave you with 100 N.
finally take the sq rt of 100 to get 10
Answer:
A) F = 1.09 10 5 N, b) Yes
Explanation:
Part A
For this exercise we need the number of free electrons in copper, as the valence of copper +1 there is a free electron for each atom. Let's use the concept of density to find the mass of copper in the sphere
ρ = m / V
.m = ρ V = ρ 4/3 π r³
The radius is half the diameter
r = 1.9 10⁻² / 2 = 0.95 10⁻² m
ρ = 8960 kg / m3
m = 8960 4/3 π (0.95 10⁻²)³
m = 3.2179 10⁻² kg
The molecular weight of copper is 63,546 g / mol which has 6,022 10²³ atoms
With this we can use a rule of proportions to enter the number of atom is this mass
#_atom = 6.022 10²³ 3.2179 10⁻² / 63.546 10⁻³
#_atom = 3,049 10²³
Therefore there is the same number of electrons, as they indicate that the charge of the protone and the electon differs by 1/10⁹ the total charge for each spherical is
q = e / 10⁹ #_atom
q = e / 10⁹ 3,049 1023
q = 3,049 10⁴ (-1.6 10⁻¹⁹)
q = -4,878 10-5 C
Electric force is
F = k q₁q₂ / r²
F = k q² / r²
Let's calculate
F = 8.99 10⁹ (4.878 10⁻⁵)²2 / (1.4 10⁻²)²
F = 1.09 10 5 N
This is a force of repulsion.
Part B
The magnitude of this force is in very easy to detect
1). Sequence from the Sun:
Inner planets:
Mercury
Venus
Earth
Mars
Outer planets:
Jupiter
Saturn
Uranus
Neptune
2). The farther a planet is from the sun, the longer it takes
to orbit the sun. Mercury ... 88 days. Earth ... 365 days.
Jupiter ... 12 years. Neptune ... 165 years.
3). Mercury & Venus ... no moons
Earth - 1
Mars - 2
Jupiter - more than 65
4). Mercury ... cratered, no atmosphere
Venus ... cratered, thick cloudy atmosphere
Mars ... dry, cratered, slight atmosphere, like 1% or Earth's
Jupiter, Saturn, Uranus, Neptune
We can't see any surface. If any of them even
HAS a surface, it's thousands of miles under a
thick atmosphere of methane gas.
5). Missing from the list
6). Here's a list from the biggest planet to the smallest one.
The numbers in parentheses are the radius of the planet --
half of the diameter:
Jupiter (69,911 km / 43,441 miles) – 1,120% the size of Earth
Saturn (58,232 km / 36,184 miles) – 945% the size of Earth
Uranus (25,362 km / 15,759 miles) – 400% the size of Earth
Neptune (24,622 km / 15,299 miles) – 388% the size of Earth
Earth (6,371 km / 3,959 miles)
Venus (6,052 km / 3,761 miles) – 95% the size of Earth
Mars (3,390 km / 2,460 miles) – 53% the size of Earth
Mercury (2,440 km / 1,516 miles) – 38% the size of Earth
7). At least seven of the planets rotate in the same direction.
There's something different about one of them ... it may be Uranus
but I'm not sure. You'll have to look this up.
8). Saturn has the famous rings, that you can almost see
with only binoculars.
Spacecraft sent to observe the outer planets have detected
very thin rings around Uranus and Neptune.
9). Included in #6.
10). I don't have complete info. Generally, the closer the planet
is to the sun, the hotter it is. But there are a few exceptions.
I think Venus ... the second one from the sun, is actually hotter
than Mercury.
11). Just about every language has its own name for each planet.
12). "Terrestrial" means "like Earth" ("Terra").
The terrestrial planets are the ones that have solid surfaces
and are made of rock.
Mercury, Venus, Earth, and Mars.
13). "Jovian" means "like Jupiter".
Either no solid surface, or very small, inside a big deep gas ball.
Jupiter, Saturn, Uranus, Neptune.