Answer:
Rubber is an insulator.
Explanation:
Rubber is an insulator. Electricity will always travel "the path of least resistance." Rubber has a very high resistance, so electricity will go somewhere else to find ground.
Answer:
The power dissipated in the 3 Ω resistor is P= 5.3watts.
Explanation:
After combine the 3 and 6 Ω resistor in parallel, we have an 2 Ω and a 4 Ω resistor in series.
The resultating resistor is of Req=6Ω.
I= V/Req
I= 2A
the parallel resistors have a potential drop of Vparallel=4 volts.
I(3Ω) = Vparallel/R(3Ω)
I(3Ω)= 1.33A
P= I(3Ω)² * R(3Ω)
P= 5.3 Watts
When breathing out, it pushes your diaphragm, the muscle below your lungs, up, which then causes the air to leave your lungs.
Answers:
a) 154.08 m/s=554.68 km/h
b) 108 m/s=388.8 km/h
Explanation:
<u>The complete question is written below:
</u>
<u></u>
<em>In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of
, it would go from rest to its top speed in 85.6 s. </em>
<em>a) What was the speed of the vessel?
</em>
<em>
</em>
<em>b) If the vessel in the sample problem accelerates for 1.00 min, what will its speed be after that minute? </em>
<em></em>
<em>Calculate the answers in both meters per second and kilometers per hour</em>
<em></em>
a) The average acceleration
is expressed as:
(1)
Where:
is the variation of velocity in a given time
, which is the difference between the final velocity
and the initial velocity
(because it starts from rest).

Isolating
from (1):
(2)
(3)
(4)
If
and
then:
(4)
b) Now we need to find the final velocity when
:
<em></em>
(5)
(6)
To solve this problem it is necessary to apply to the concepts related to energy conservation. For this purpose we will consider potential energy and kinetic energy as the energies linked to the body. The final kinetic energy is null since everything is converted into potential energy, therefore
Potential Energy can be defined as,

Kinetic Energy can be defined as,

Now for Conservation of Energy,




Therefore the highets position the car reaches above the bottom of the hill is 40.02m