Answer:
A
Explanation:
When a temperature increases particles tend to collide with each other often as they gain kinetic energy making them collide much more often and they'll collide with more energy due to the increase of kinetic energy
Answer:
Molecular formula = C₄H₆As₆Cu₄O₁₆
Explanation:
Given data:
Empirical formula = C₂H₃As₃Cu₂O₈
Molar mass of compound = 1013 g/mol
Molecular formula = ?
Solution:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
Empirical formula mass of C₂H₃As₃Cu₂O₈ is 506.897 g/mol
by putting values.
n = 1013 / 506.897
n = 2
Molecular formula = n (empirical formula)
Molecular formula = 2 (C₂H₃As₃Cu₂O₈)
Molecular formula = C₄H₆As₆Cu₄O₁₆
Answer: 1.
2. 3 moles of
: 2 moles of 
3. 0.33 moles of
: 0.92 moles of 
4.
is the limiting reagent and
is the excess reagent.
5. Theoretical yield of
is 29.3 g
Explanation:
To calculate the moles :

The balanced chemical equation is:
According to stoichiometry :
3 moles of
require = 2 moles of
Thus 0.33 moles of
will require=
of
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 3 moles of
give = 2 moles of
Thus 0.33 moles of
give =
of
Theoretical yield of
Thus 29.3 g of aluminium chloride is formed.
Answer:
No, ΔE does not always equal zero because it refers to the systems internal energy, which is affected by heat and work
Explanation:
According to the first law of thermodynamics, energy is neither created nor destroyed. This implies that the total energy of a system is always a constant.
So, according to the first law of thermodynamics we have that ΔE = q + w. This means that the value of ΔE depends on q (heat) and w(work). Hence ΔE is not always zero since it depends on the respective values of q and w.