Definite Shape and Definite Volume is a solid.
NO Definite Shape and Definite Volume is a liquid.
NO Definite Shape and NO Definite Volume is a gas.
Answer is: excess of hydrazine is 16 grams.
Chemical reaction: N₂O₄(l) + 2N₂H₄(l) → 3N₂(g) + 4H₂<span>O(g).
</span>m(N₂H₄) = 80,1 g.
m(N₂O₄) = 92,0 g.
n(N₂H₄) = m(N₂H₄) ÷ M(N₂H₄).
n(N₂H₄) = 80,1 g ÷ 32 g/mol.
n(N₂H₄) = 2,5 mol.
n(N₂O₄) = 92 g ÷ 92 g/mol.
n(N₂O₄) = 1 mol; limiting reactant.
From chemical reaction: n(N₂H₄) : n(N₂O₄) = 2 : 1.
n(N₂H₄) = 2 mol reacts.
Δn(N₂H₄) = 2,5 mol - 2 mol = 0,5 mol.
Δm(N₂H₄) = 0,5 mol · 32 g/mol = 16 g.
I believe that the molar mass is 342.34g/mol
First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Answer:
The answer is IONIC BOND
Explanation:
Steroidogenic acute regulatory, (StAR) protein is a type of globular protein, which allows it act as an active catalyst on substrates. Because the substrates on which enzymes act usually have higher molecular weights of several hundred as compared to the enzymes, only a fraction of the enzyme's surface is in contact with the substrate. This region of contact called the <em>active site</em>, is as a result of the protein folding itself into a tertiary structure.
Once the correct substrate has bound at the active site of the enzyme, an enzyme-substrate complex is created. The substrate is usually held in the complex by combinations of electrical attraction, hydrophobic repulsion, or hydrogen bonding between and from the amino acid; the strongest of which is the ionic/electrostatic bonding due to larger amount of ionic "R" groups in the protein structure.
So whilst all these inter-molecular interactions are possible, the strongest would be <u>ionic bond.</u>