<u>Answer:</u> The number of moles of gas present is 0.276 moles
<u>Explanation:</u>
To calculate the number of moles of gas, we use the equation given by ideal gas:
PV = nRT
where,
P = Pressure of the gas = 725 mm Hg
V = Volume of the gas = 7.55 L
n = number of moles of gas = ?
R = Gas constant = 
T = Temperature of the gas = 
Putting values in above equation, we get:

Hence, the number of moles of gas present is 0.276 moles
Gases have high kinetic energy: the molecules are moving much more than in a liquid or solid. You can cut out A and B. In the liquids, the difference is temperature. If a lower temperature is closer to being solid, and a solid has lower kinetic energy than a liquid, then C is the answer. Hope this helps.
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46
Sodium chloride's solubility only changed about 5 g/100 mL water, whereas potassium nitrate's solubility changed about 230 g/100 mL water
Chemical energy is kept inside the bonds that are connected to withatoms with other atoms and molecules with other molecules.
Because chemical energy is kept in likestorage. It is an shape of potential energy.
When a chemical reaction takes place, the stored chemical energy is let out.