Answer:
ysjsjskdmdddlsdldlehfjcmdkdudheb
Explanation:
jekeidndndmdjrrkddodn
Answer:
1. C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. V = 596L
Explanation:
Butane (C₄H₁₀) reacts with oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O) thus:
C₄H₁₀ + O₂ → CO₂ + H₂O
1. The balanced chemical equation is:
C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. 0,360kg of butane are:
360g×
=<em>6,19moles of butane</em>
These moles of butane are:
6,19moles of butane×
= <em>24,8 moles CO₂</em>
Using V=nRT/P
Where:
n are moles (24,8 moles CO₂); R is gas constant (0,082atmL/molK); T is temperature, 20°C (293,15K); and P is pressure (1atm).
Volume (V) is:
<em>V = 596L</em>
I hope it helps!
Hello!
The initial mass of
Magnesium Sulfate Heptahydrate (MgSO₄·7H₂O) is 23,08 g
The chemical reaction for the dehydrating of
Magnesium Sulfate Heptahydrate (MgSO₄·7H₂O) is the following:
MgSO₄·7H₂O(s) + Δ → MgSO₄(s) + 7H₂O(g)
We know that the sample loses 11,80 g upon heating.
That mass is the mass of Water that is released as vapor. Knowing that piece of information, we can apply the following conversion factor to go from the mass of water to the moles of water and back to the mass of the original compound (mi).

Have a nice day!
Answer:
52 da
Step-by-step explanation:
Whenever a question asks you, "How long to reach a certain concentration?" or something similar, you must use the appropriate integrated rate law expression.
The i<em>ntegrated rate law for a first-order reaction </em>is
ln([A₀]/[A] ) = kt
Data:
[A]₀ = 750 mg
[A] = 68 mg
t_ ½ = 15 da
Step 1. Calculate the value of the rate constant.
t_½ = ln2/k Multiply each side by k
kt_½ = ln2 Divide each side by t_½
k = ln2/t_½
= ln2/15
= 0.0462 da⁻¹
Step 2. Calculate the time
ln(750/68) = 0.0462t
ln11.0 = 0.0462t
2.40 = 0.0462t Divide each side by 0.0462
t = 52 da