Answer:
Four substitution products are obtained. The carbocation that forms can react with either nucleophile (H2O or CH3OH) from either the top or bottom side of the molecule
Explanation:
An SN1 reaction usually involves the formation of a carbocation in the slow rate determining step. This carbocation is now attacked by a nucleophile in a subsequent fast step to give the desired product.
However, the product is obtained as a racemic mixture because the nucleophile may attack from the top or bottom of the carbocation hence both attacks are equally probable.
The attacking nucleophile in this case may be water or CH3OH
Answer:
it cannot !!
Explanation:
a chemical reaction MUST occur to separate a compound! :)
Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer:
The answer to your question is letter B, 2-methylhexane.
Explanation:
Remember that for naming organic compounds first, we need to look for the largest chain of carbons.
In your example, the largest chain is horizontal and has 6 carbons.
Later, we need to circle all the branches, in your example there is only one branch located close to the left side
After that, we number the carbons of the main chain, starting in the corner with more branches, in your example we start from the first carbon on the left.
Finally, start naming the number of the carbon branch, later hte name of the branch and finally the name of the main chain.
Answer:
subscribe other yt chanel
Explanation:
it will help you tu became big