From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
Answer:
D. [NO₂]²/[N₂O₄]
Explanation:
The equilibrium constant expression for a reaction is products over reactants. Since NO₂ has a coefficient of 2, it will become an exponent.
So, it would be:
[NO₂]²/[N₂O₄]
Hope that helps.
Answer:
The noble gases (Group 18) are located in the right of the periodic table and were previously referred to as the "inert gases" due to the fact that their filled valence shells (octets) make them extremely nonreactivE
Explanation:
Answer: A volume of 500 mL water is required to prepare 0.1 M
from 100 ml of 0.5 M solution.
Explanation:
Given:
= 0.1 M,
= ?
= 0.5 M,
= 100 mL
Formula used to calculate the volume of water is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that a volume of 500 mL water is required to prepare 0.1 M
from 100 ml of 0.5 M solution.