What happens when the light hits the glass depends on what it was in before it hit the glass.
WHILE it's in the glass, the speed of light doesn't change.
Answer:
No
Explanation:
Because if you only measure it by its mass, or weight there could be other substances with the same mass, or weight. If you wanna identify it then list the color, and streak
Answer:
2.4s
Explanation:
The length of the pendulum = 75ft
Diameter d = 12 inches
The time period of the pendulum is given as
T = 2pi(L/g)^1/2
Then the time it takes to move from displacement to equilibrium is given as:
t = T/4
= (Pi/2)*(L/g)^1/2
= pi/2 x [(75x0.3048)/9.81]^0.5
= 1.57x[22.86/9.81)^0.5
= 2.4s
2.4 seconds is the least amount of time that it would take.
Answer:
376966.991 Joules
Explanation:
Given that :
the height = 12 m
Let assume the tank have a thickness = dh
The radius of the tank by using the concept of similar triangle is :


The area of the tank =
The area of the tank = 
The area of the tank = 
The volume of the tank is = area × thickness
= 
Weight of the element = 
where;
= density of water ; which is given as 10000 N/m³
So;
Weight of the element = 
Weight of the element = 
However; the work required to pump this water = weight × height rise
where the height rise = 12 - h
the work required to pump this water =
(12 - h)
the work required to pump this water = 
We can determine the total workdone by integrating the work required to pump this water
SO;
Workdone = 
= 
= ![\mathbf{ 69.44 \pi[ \frac{12h^3}{3}- \frac{h^4}{4}]^{12}}_0} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%2069.44%20%5Cpi%5B%20%5Cfrac%7B12h%5E3%7D%7B3%7D-%20%20%5Cfrac%7Bh%5E4%7D%7B4%7D%5D%5E%7B12%7D%7D_0%7D%20%7D)
= ![\mathbf{69.44 \pi [ \frac{12^4}{3}-\frac{12^4}{4}]}](https://tex.z-dn.net/?f=%5Cmathbf%7B69.44%20%5Cpi%20%5B%20%5Cfrac%7B12%5E4%7D%7B3%7D-%5Cfrac%7B12%5E4%7D%7B4%7D%5D%7D)
= ![\mathbf{69.44 \pi*12^4 [ \frac{4-3}{12}]}](https://tex.z-dn.net/?f=%5Cmathbf%7B69.44%20%5Cpi%2A12%5E4%20%5B%20%5Cfrac%7B4-3%7D%7B12%7D%5D%7D)
= 
= 376966.991 Joules
Answer:
20,000,000 N
Explanation:
First find the acceleration:
a = Δv / Δt
a = (0 − 40 m/s) / 0.010 s
a = -4000 m/s²
Next use Newton's second law to find the force on the car:
F = ma
F = (5000 kg) (-4000 m/s²)
F = -20,000,000 N
According to Newton's third law, the force on the wall is equal and opposite the force on the car.
F = 20,000,000 N